首页> 外文期刊>International journal of hydrogen energy >A novel core-shell LSCF perovskite structured electrocatalyst with local hetero-interface for solid oxide fuel cells
【24h】

A novel core-shell LSCF perovskite structured electrocatalyst with local hetero-interface for solid oxide fuel cells

机译:一种新型的具有局部异质界面的核壳型LSCF钙钛矿结构电催化剂,用于固体氧化物燃料电池

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, a La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF113) perovskite core coated by Ruddlesden-Popper phase La0.6Sr1.4Co0.2Fe0.8O4-delta (LSCF214) thin film to form a LSCF113-214 core-shell structure cathode is synthesized by Sr2+ solution coating method. Its phase composition, lattice structure, electrochemical catalytic activity and full cell performance are investigated. The electrocatalytic activity and stability of the LSCF113 cathode are enhanced by in situ formation of LSCF214 on the LSCF113 surface. The electrochemical performance enhancement is due to the higher catalytic activity of the LSCF214 Ruddlesden-Popper phase and the mismatch of the lattice parameters between the LSCF214 and LSCF113 regions leading to more favorable oxygen vacancy formation and oxygen molecule adsorption. The electrochemical impedance spectrum indicates that LSCF113-214 electrode has a lower polarization resistance (0.17 Omega cm(2)) than the LSCF113 electrode (0.32 Omega cm(2)) at 650 degrees C. And the long term stability of LSCF113-214 is evaluated with no structure evolution in 400 h test at 600 degrees C. An anode-supported single cell with doped ceria as the electrolyte is used to evaluate the electrochemical performance of LSCF113-214, which shows an open circuit voltage of 0.81 V and a maximum power density of 0.57 W cm(-2) at 650 degrees C. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:在这项工作中,用Ruddlesden-Popper相La0.6Sr1.4Co0.2Fe0.8O4-delta(LSCF214)薄膜包覆的La0.6Sr0.4Co0.2Fe0.8O3-delta(LSCF113)钙钛矿核形成了LSCF113-214核通过Sr2 +溶液涂覆法合成了壳型阴极。研究了其相组成,晶格结构,电化学催化活性和全电池性能。通过在LSCF113表面上原位形成LSCF214,可以增强LSCF113阴极的电催化活性和稳定性。电化学性能的提高归因于LSCF214 Ruddlesden-Popper相的较高催化活性以及LSCF214和LSCF113区之间的晶格参数不匹配,从而导致更有利的氧空位形成和氧分子吸附。电化学阻抗谱表明,在650摄氏度下,LSCF113-214电极的极化电阻(0.17 Omega cm(2))比LSCF113电极(0.32 Omega cm(2))低.LSCF113-214的长期稳定性为评估在600摄氏度下于400小时的测试中没有结构演变。使用掺杂二氧化铈作为电解质的阳极支撑的单电池评估LSCF113-214的电化学性能,其开路电压为0.81 V,最大650摄氏度时的功率密度为0.57 W cm(-2)。(C)2020 Hydrogen Energy Publications LLC。由Elsevier Ltd.出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2020年第20期|11824-11833|共10页
  • 作者

  • 作者单位

    Hefei Univ Technol Sch Mat Sci & Engn Hefei 230009 Peoples R China|Hefei Univ Technol Key Lab Adv Funct Mat & Devices Anhui Prov Tunxi Rd 193 Hefei Anhui Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Core-shell; Surface coating; Oxygen reduction reaction; Lattice mismatch;

    机译:核 - 壳;表面涂层;氧还原反应;晶格失配;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号