首页> 外文期刊>International journal of hydrogen energy >Oxygen vacancies mediated in-situ growth of noble-metal (Ag, Au, Pt) nanoparticles on 3D TiO_2 hierarchical spheres for efficient photocatalytic hydrogen evolution from water splitting
【24h】

Oxygen vacancies mediated in-situ growth of noble-metal (Ag, Au, Pt) nanoparticles on 3D TiO_2 hierarchical spheres for efficient photocatalytic hydrogen evolution from water splitting

机译:氧空位介导的贵金属(Ag,Au,Pt)纳米粒子在3D TiO_2分层球体上原位生长,从而有效地从水分解中释放出光催化氢

获取原文
获取原文并翻译 | 示例
       

摘要

Defect engineering is effective to extend the light absorption range of TiO2. However, the oxygen vacancy defects in TiO2 may serve as recombination centers, hampering the separation and transfer of photo-generated charges. Here, we present a strategy of in-situ depositing noble-metal (M = Ag, Au or Pt) nanoparticles (NPs) on defective 3D TiO2 hierarchical spheres (THS) with large surface area through the redox reaction between metal ions in solution and the electrons trapped at oxygen vacancies in THS. The oxygen vacancies at the THS surface are consumed, resulting in direct contact between TiO2 and noble-metal NPs, while the other oxygen vacancies in the bulk are retained to promote visible light absorption. The noble-metal NPs with well-controlled size and distribution throughout the porous hierarchical structure not only facilitate the generation of electron hole pairs in THS due to the effect of surface plasmon-induced resonance energy transfer (SPRET) from noble-metal NPs to TiO2, but also expediate the electron transfer from TiO2 to noble-metal NPs due to the Schottky junction at the TiO2/M interface. Therefore, THS-M shows improved photocatalytic performance in water splitting compared to THS. The optimum performance is achieved on THS-Pt (13.16 mmol h(-1)g(-1)) under full-spectrum (UV-Vis) irradiation but on THS-Au (1.49 mmol h(-1)g(-1)) under visible-light irradiation. The underlying mechanisms are proposed from the surface plasmon resonance of noble-metal NPs as well as the Schottky junction at the TiO2/M interface. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:缺陷工程可以有效地扩展TiO2的光吸收范围。但是,TiO2中的氧空位缺陷可能会成为复合中心,从而阻碍了光生电荷的分离和转移。在这里,我们提出一种通过溶液中金属离子与金属离子之间的氧化还原反应将贵金属(M = Ag,Au或Pt)纳米颗粒(NPs)原位沉积在具有较大表面积的缺陷3D TiO2分级球(THS)上的策略。 THS中的氧空位处捕获的电子。 THS表面的氧空位被消耗掉,导致TiO2与贵金属NP之间直接接触,而主体中的其他氧空位则保留下来以促进可见光吸收。由于表面等离激元引起的从贵金属NPs到TiO2的共振能量转移(SPRET)的影响,具有良好控制的大小和分布在整个多孔层级结构中的贵金属NPs不仅促进了THS中电子空穴对的生成。 ,但由于TiO2 / M界面处的肖特基结,也加快了从TiO2到贵金属NP的电子转移。因此,与THS相比,THS-M在水分解中显示出改善的光催化性能。在全光谱(UV-Vis)辐射下,THS-Pt(13.16 mmol h(-1)g(-1))可获得最佳性能,而THS-Au(1.49 mmol h(-1)g(-1) ))在可见光照射下。从贵金属NP的表面等离振子共振以及TiO2 / M界面的肖特基结提出了潜在的机理。 (C)2019氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号