首页> 外文期刊>International journal of hydrogen energy >Study of cracking of methane for hydrogen production using concentrated solar energy
【24h】

Study of cracking of methane for hydrogen production using concentrated solar energy

机译:集中太阳能裂解制氢甲烷的研究

获取原文
获取原文并翻译 | 示例
       

摘要

In this study, the cracking phenomenon of methane taking place in a cylindrical cavity of 16 cm in diameter and 40 cm in length under the heat of concentrated solar radiation without any catalyst is analysed. Three cases have been chosen; in all cases the primary phase contains methane and hydrogen gases. In the first case, we consider two phases; the secondary phase is a homogeneous carbon black powder with 50 nm of diameter; in the second case we have three phases where the two secondary phases are a particles powder with two diameters 20 and 80 nm and finally, a third case of five phases with a powder of four different diameters 20, 40, 60 and 80 nm. The low Reynolds K-epsilon turbulence model was applied. A calculation code "ANSYS FLUENT" is used to simulate the cracking phenomena where an Eulerian - Eulerian model is applied. The choice of several diameters greatly increases the calculation time but it approaches more of the physical reality of the radiation by these particles during the cracking. Results have shown that increasing the number of diameters gives higher cracking rates; the case of the powder of 4 different diameters gives the highest cracking rate. A parametric study as a function of the inlet velocity, carbon particle diameters and the intensity of solar radiation is realized. For the cracking heat, provided by the choice of the two concentrators of 5 and 16 MW/m(2) used in this simulation, the CH4 inlet velocity is a decisive parameter for the cracking rate. Any increase in the inlet velocity requires more heat and this leads to a decrease in the cracking rate. For a velocity not exceeding 0.177 m/s (i.e. 0.3 L/min), both solar concentrations give the same amount of hydrogen produced. These quantities of hydrogen obtained reach maximum values for an inlet flow rate of CH4 between 0.58 L/min (i.e. 0.34 m/s) and 0.62 L/min (i.e. 0.3655 m/s) for both reactors. The results are interpreted and compared with experimental work. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:在这项研究中,分析了在没有任何催化剂的集中太阳辐射热的作用下,直径为16 cm,长度为40 cm的圆柱形空腔中甲烷的裂解现象。选择了三种情况;在所有情况下,初级相均包含甲烷和氢气。在第一种情况下,我们考虑两个阶段。第二相是直径为50nm的均质炭黑粉末。在第二种情况下,我们具有三个相,其中两个第二相是具有两个直径20和80 nm的颗粒粉末,最后是五个相的第三种情况,具有四个直径分别为20、40、60和80 nm的粉末。应用了低雷诺Kε湍流模型。计算代码“ ANSYS FLUENT”用于模拟应用欧拉-欧拉模型的开裂现象。几个直径的选择大大增加了计算时间,但在开裂期间,这些粒子更接近于辐射的物理现实。结果表明,增加直径数量可以提高裂纹率。 4种不同直径粉末的情况下,裂化率最高。实现了基于入口速度,碳颗粒直径和太阳辐射强度的参数研究。对于裂解热,通过在此模拟中使用两个浓缩器5和16 MW / m(2)的选择来提供,CH4入口速度是裂解速率的决定性参数。进口速度的任何增加都需要更多的热量,这会导致裂化率降低。对于不超过0.177 m / s(即0.3 L / min)的速度,两个太阳能浓度都会产生相同量的氢气。对于两个反应器,对于CH 4的入口流速而言,这些获得的氢气量达到最大值,介于0.58 L / min(即0.34 m / s)和0.62 L / min(即0.3655 m / s)之间。解释结果并将其与实验工作进行比较。 (C)2019氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号