首页> 外文期刊>International journal of hydrogen energy >Proton exchange membrane water electrolysis at high current densities: Investigation of thermal limitations
【24h】

Proton exchange membrane water electrolysis at high current densities: Investigation of thermal limitations

机译:高电流密度下质子交换膜水电解:热极限研究

获取原文
获取原文并翻译 | 示例
       

摘要

In this work the thermal limitations of high current density proton exchange membrane water electrolysis are investigated by the use of a one dimensional model. The model encompasses in-cell heat transport from the membrane electrode assembly to the flow field channels. It is validated by in-situ temperature measurements using thin bare wire thermocouples integrated into the membrane electrode assemblies based on Nafion 117 membranes in a 5 cm(2) cell setup. Heat conductivities of the porous transport layers, titanium sinter metal and carbon paper, between membrane electrode assembly and flow fields are measured in the relevant operating temperature range of 40 degrees C - 90 degrees C for application in the model. Additionally, high current density experiments up to 25 A/cm(2) are conducted with Nafion 117, Nafion (R) 212 and Nafion XL based membrane electrode assemblies. Experimental results are in agreement with the heat transport model. It is shown that for anode-only water circulation, water flows around 25 ml/(min cm(2)) are necessary for an effective heat removal in steady state operation at 10 A/cm(2), 80 degrees C water inlet temperature and 90 degrees C maximum membrane electrode assembly temperature. The measured cell voltage at this current density is 2,05 V which corresponds to a cell efficiency of 61 % based on lower heating value. Operation at these high current densities results in three to ten-fold higher power density compared to current state of the art proton exchange membrane water electrolysers. This would drastically lower the material usage and the capital expenditures for the electrolysis cell stack. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:在这项工作中,使用一维模型研究了高电流密度质子交换膜水电解的热极限。该模型包括从膜电极组件到流场通道的细胞内热传递。通过使用5 cm(2)电池设置中基于Nafion 117膜的,集成到膜电极组件中的细裸线热电偶的原位温度测量进行了验证。膜电极组件和流场之间的多孔传输层,钛烧结金属和碳纸的导热率是在40摄氏度至90摄氏度的相关工作温度范围内测量的,以用于模型中。此外,使用基于Nafion 117,Nafion(R)212和Nafion XL的膜电极组件进行了高达25 A / cm(2)的高电流密度实验。实验结果与传热模型吻合。结果表明,对于仅阳极的水循环,为了在稳态温度下以10 A / cm(2)和80摄氏度的进水温度运行,要有效地排热,水流量必须约为25 ml /(min cm(2))。最高膜电极组件温度为90摄氏度。在此电流密度下测得的电池电压为2.05 V,基于较低的发热量,这相当于61%的电池效率。与目前的最新质子交换膜水电解槽相比,在这些高电流密度下运行可导致三到十倍的高功率密度。这将大大降低电解池堆的材料使用量和资本支出。 (C)2019氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号