首页> 外文期刊>International journal of hydrogen energy >The fabrication of silane modified graphene oxide supported Ni-Co bimetallic electrocatalysts: A catalytic system for superior oxygen reduction in microbial fuel cells
【24h】

The fabrication of silane modified graphene oxide supported Ni-Co bimetallic electrocatalysts: A catalytic system for superior oxygen reduction in microbial fuel cells

机译:硅烷改性的氧化石墨烯负载的Ni-Co双金属电催化剂的制备:一种用于微生物燃料电池中优异的氧还原的催化系统

获取原文
获取原文并翻译 | 示例
       

摘要

Microbial fuel cells (MFCs) exploit the ability of microorganisms to generate clean energy from organic pollutants in wastewater. However, the poor cathode performance and the use of the expensive rare metal platinum as a catalyst limit their application and scalability. In this study, we have synthesised a Ni-Co/GO nanocomposite and applied it as a potential cathode catalyst to single-chamber MFCs. To improve the performance of a Ni -Co-based hybrid nanocomposite, the support of graphene oxide (GO) is covalently modified with gamma-amino propyl tri-ethoxy silane (APTES) through a silane modification reaction. The physical and chemical properties of the synthesised materials are characterised with Fourier transform infrared (FTIR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) techniques. A microscopic study has shown that metal nanoparticles are distributed uniformly on the MGO matrix. The electrocatalytic activity of the synthesised hybrid nanocatalysts is analysed for oxygen reduction reaction (ORR). A cyclic voltammetry experiment has shown that the Ni-Co/MGO catalyst exhibits a higher reduction peak current value and a higher positive onset potential than the Ni-Co/GO catalyst and Pt/C catalyst, indicating an enhanced ORR activity of the Ni-Co/MGO catalyst. Ni-Co/MGO also exhibits the highest initial current of 0.116 mA in the chronoamperometry test, which decreases to 0.049 mA after 16000 s. The electrochemical results demonstrate that the synthesised Ni-Co/MGO catalyst has a higher electrocatalytic activity and higher stability than the state-of-the-art Pt/C catalyst. More importantly, a MFC with Ni-Co/MGO as a cathode catalyst shows the maximum power density of 1003.18 mWm(-2), which is much higher than in the case of the Ni-Co/GO catalyst (889.6 mWm(-2)) and approximately 2.1 times higher than that of the state-of-the-art Pt/C (483.48 mWm(-2)). Consequently, the Ni-Co/MGO nanocomposite also shows the highest open circuit voltage of 0.857 V among the other studied catalysts. Moreover, the Ni-Co/MGO catalyst has a lower biofouling level than a commercial 10 wt% Pt/C catalyst, which shows that the synthesised cathode catalyst is superior in terms of stability, overall performance and usage. These results suggest that the newly developed Ni -Co/MGO catalyst can be applied as a potential substitute for the Pt/C cathode catalyst for the practical application of MFCs. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:微生物燃料电池(MFCs)利用微生物从废水中的有机污染物中产生清洁能源的能力。然而,不良的阴极性能以及昂贵的稀有金属铂作为催化剂的使用限制了它们的应用和可扩展性。在这项研究中,我们合成了Ni-Co / GO纳米复合材料,并将其作为潜在的阴极催化剂应用于单腔MFC。为了改善Ni-Co基杂化纳米复合材料的性能,通过硅烷改性反应,用γ-氨基丙基三乙氧基硅烷(APTES)对氧化石墨烯(GO)的载体进行共价改性。合成材料的物理和化学性质通过傅里叶变换红外光谱(FTIR),X射线粉末衍射(XRD),X射线光电子能谱(XPS)和能量色散能谱(EDS)技术进行表征。显微镜研究表明,金属纳米颗粒均匀分布在MGO基质上。分析合成的杂化纳米催化剂的电催化活性以进行氧还原反应(ORR)。循环伏安法实验表明,与Ni-Co / GO催化剂和Pt / C催化剂相比,Ni-Co / MGO催化剂具有更高的还原峰值电流值和更高的正起始电位,表明Ni-Co / MGO催化剂的ORR活性增强。 Co / MGO催化剂。在计时电流法测试中,Ni-Co / MGO的初始电流最高,为0.116 mA,在16000 s后降低至0.049 mA。电化学结果表明,与现有技术的Pt / C催化剂相比,合成的Ni-Co / MGO催化剂具有更高的电催化活性和更高的稳定性。更重要的是,使用Ni-Co / MGO作为阴极催化剂的MFC的最大功率密度为1003.18 mWm(-2),比Ni-Co / GO催化剂的最大功率密度(889.6 mWm(-2) )),比最新的Pt / C(483.48 mWm(-2))高约2.1倍。因此,在其他研究的催化剂中,Ni-Co / MGO纳米复合材料还显示出最高的开路电压0.857V。而且,Ni-Co / MGO催化剂的生物结垢水平低于市售的10wt%的Pt / C催化剂,这表明合成的阴极催化剂在稳定性,总体性能和用途方面是优异的。这些结果表明,新开发的Ni -Co / MGO催化剂可作为MFC实际应用中Pt / C阴极催化剂的潜在替代品。 (C)2019氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号