...
首页> 外文期刊>International journal of hydrogen energy >Thermal conductivity measurements of magnesium hydride powder beds under operating conditions for heat storage applications
【24h】

Thermal conductivity measurements of magnesium hydride powder beds under operating conditions for heat storage applications

机译:储热应用条件下氢化镁粉末床导热系数的测量

获取原文
获取原文并翻译 | 示例
           

摘要

One of the major issues of the change in energy politics is the storage of renewable energy in order to facilitate a continuous energy supply to the grid. An efficient way to store energy (heat) is provided by the usage of Thermochemical Energy Storage (TES) in metal hydrides. Energy is stored in dehydrogenated metal hydrides and can be released by hydrogenation for consumption. One prominent candidate for high temperature (400 degrees C) heat storage is magnesium hydride. It is a well-known and investigated material which shows high cycling stability over hundreds of cycles. It is an abundant material, non-toxic and easy to prepare in bigger scales. One of the major drawbacks for heat storage applications is the low heat transfer capability of packed beds of magnesium hydrides. In this work we present results of effective thermal conductivity (ETC) which were measured under hydrogen pressure up to 25 bar and temperatures up to 410 degrees C in order to meet the operating conditions of magnesium hydride as a thermochemical heat storage material. We could show that the effective thermal conductivity of a magnesium hydride hydrogen system at 410 C and 25 bar hydrogen increases by 10% from 1.0 W m(-1) K-1 to 1.1 W m(-1) K-1 after 18 discharging and charging cycles. In dehydrogenated magnesium hydride this increase of the thermal conductivity was found to be at 50% from 1.20 W m(-1) K-1 to 1.80 W m(-1) K-1 at 21 bar hydrogen. These data are very important for the design and construction of heat storage tanks based on high temperature metal hydrides in the future. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:能源政治变化的主要问题之一是可再生能源的存储,以促进向电网的持续能源供应。通过在金属氢化物中使用热化学能存储(TES),可以提供一种有效的存储能量(热量)的方法。能量存储在脱氢的金属氢化物中,可以通过氢化释放出来以进行消耗。氢化镁是高温(400摄氏度)蓄热的一个重要候选者。它是一种众所周知且经过研究的材料,在数百个循环中显示出很高的循环稳定性。它是一种丰富的材料,无毒且易于大规模制备。储热应用的主要缺点之一是氢化镁填充床的传热能力低。在这项工作中,我们介绍了有效导热系数(ETC)的结果,该结果是在氢气压力高达25 bar和温度高达410℃的条件下测量的,以满足氢化镁作为热化学储热材料的运行条件。我们可以证明,经过18次放电,氢化镁氢系统在410 C和25 bar氢下的有效热导率从1.0 W m(-1)K-1增加到1.1 W m(-1)K-1增加了10%。和充电周期。在脱氢氢化镁中,发现导热系数在21 bar氢气下从1.20 W m(-1)K-1到1.80 W m(-1)K-1为50%。这些数据对于将来基于高温金属氢化物的储热罐的设计和建造非常重要。 (C)2019氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号