首页> 外文期刊>International journal of hydrogen energy >Miniaturized additively manufactured co-laminar microfluidic glucose biofuel cell with optimized grade pencil bioelectrodes
【24h】

Miniaturized additively manufactured co-laminar microfluidic glucose biofuel cell with optimized grade pencil bioelectrodes

机译:具有优化级铅笔生物电极的小型化增材制造的共层微流葡萄糖生物燃料电池

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Miniaturization of enzymatic biofuel cell has become a crucial factor especially towards device fabrication and integrated bioelectrode system. When successful in a cost-effective manner, it can be used as a source of qualitative electric power for portable and implantable devices. The present work demonstrates the design and fabrication of costeffective, portable, miniaturized microfluidic enzymatic biofuel cell (M-EBFC) using rapid prototyping 3D printing (3DP) technique. The low cost, radially available, non-toxic Pencil Graphite Electrodes (PGE's) were used as the electrode material. Various grades of PGE's were rigorously studied, by screening separately and cohesively for both anodic and cathodic sides, and the optimized ones (B and 5H for anodic and cathodic sides respectively) have been utilized. These PGE's successively encapsulated into Y-shaped microchannel, fabricated using a commercial 3D Printer. This platform, integrating 3D printing technology and PGE's, delivers simplistic, cost-effective and quick fabrication method, which eradicates the necessity of any further amendment and post-processing. Furthermore, the enhancement of the surface area and electrochemical sensing, PGE's were coated with carboxylated multiwalled carbon nanotube followed by the covalent immobilization enzymes. The electrochemical and polarization performance was compared between both HB and the optimized PGEs. The optimized PGE based 3D printed microfluidic membraneless enzymatic biofuel cell (3DP-MM-EBFC) showed open circuit potential (OCP) of 0.433 V and with a maximum power density of 18 mu W cm(-2) at a current density of 60 mu A cm(-2). This rapidly prototyped 3D printed fabrication technology demonstrates the viability of simple and advanced microfabrication techniques to build well-organized plugand-play devices to power several portable low-power microelectronic devices and sensors. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:酶促生物燃料电池的小型化已成为至关重要的因素,特别是对于设备制造和集成生物电极系统而言。当以具有成本效益的方式取得成功时,它可以用作便携式和可植入设备的定性电源。本工作演示了使用快速原型3D打印(3DP)技术的经济高效,便携式,微型化微流酶生物燃料电池(M-EBFC)的设计和制造。低成本,放射状,无毒的铅笔状石墨电极(PGE's)被用作电极材料。通过分别和内聚性筛选阳极和阴极侧,对各种等级的PGE进行了严格的研究,并使用了优化的PGE(阳极和阴极侧分别为B和5H)。这些PGE依次封装到使用商用3D打印机制造的Y形微通道中。该平台集成了3D打印技术和PGE,提供了一种简单,经济高效的快速制造方法,从而消除了进行任何进一步修改和后处理的必要性。此外,为了增加表面积和电化学感测,PGE被羧化的多壁碳纳米管覆盖,然后被共价固定化酶覆盖。比较了HB和优化的PGE之间的电化学和极化性能。优化的基于PGE的3D打印微流无膜酶促生物燃料电池(3DP-MM-EBFC)显示的开路电势(OCP)为0.433 V,在电流密度为60 mu时最大功率密度为18μW cm(-2)一厘米(-2)这种快速原型化的3D打印制造技术展示了简单而先进的微制造技术的可行性,该技术可构建组织良好的即插即用设备,为几种便携式低功耗微电子设备和传感器供电。 (C)2019氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号