首页> 外文期刊>International journal of hydrogen energy >Photochemical characteristics of Chlamydomonas mutant hpm91 lacking proton gradient regulation 5 (PGR5) during sustained H_2 photoproduction under sulfur deprivation
【24h】

Photochemical characteristics of Chlamydomonas mutant hpm91 lacking proton gradient regulation 5 (PGR5) during sustained H_2 photoproduction under sulfur deprivation

机译:硫剥夺下持续H_2光产生过程中缺乏质子梯度调控5(PGR5)的衣藻突变体hpm91的光化学特征

获取原文
获取原文并翻译 | 示例
       

摘要

Renewable H-2 photoproduction by Chlamydomonas reinhardtii offers a desirable bio-system for solar fuels. However, its large-scale application is hindered mainly due to lack of ideal strains. We previously isolated a mutant hpm91 which lacks PGR5 and sustains H-2 photoproduction for 25 days. To understand the photosynthetic basis for this remarkable phenotype, we hereby investigated its photochemical characteristics during sulfur-deprived H-2 photoproduction using in vivo chlorophyll fluorescence spectroscopy. Compared to wild type, effective quantum yield of PSII and PSI of hpm91 increased upto 78.9% and 147.6%, respectively. Electron transport rate of each photosystem is closely correlated with the increase of quantum yield, suggesting overall enhanced photochemistry of hpm91 under such condition. Moreover, ATP synthase activity decays slower and remains higher in this mutant. These are in vivo evidence demonstrating increased photosynthetic efficiency of hpm91 promotes its H2 photoproduction. Together with its competent photoheterotrophic growth in a larger photobioreactor, we propose that hpm91 is a valuable strain for re-engineering Chlamydomonas towards improving light energy efficiency in a large-scale system. (C) 2019 Institute of Botany, Chinese Academy of Sciences. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.
机译:衣藻(Chlamydomonas reinhardtii)的可再生H-2照相生产为太阳能提供了理想的生物系统。但是,由于缺乏理想菌株,阻碍了其大规模应用。我们以前分离出了突变型hpm91,该突变型缺少pgr5,可维持H-2产生25天的光。为了解此显着表型的光合作用基础,我们在此使用体内叶绿素荧光光谱法研究了硫缺乏的H-2光产生过程中的光化学特征。与野生型相比,hpm91的PSII和PSI的有效量子产率分别提高了78.9%和147.6%。每个光系统的电子传输速率与量子产率的增加紧密相关,表明在这种条件下hpm91的整体光化学增强。此外,在此突变体中,ATP合酶活性衰减较慢,并保持较高水平。这些是体内证据,表明hpm91的光合作用效率提高,可促进其H2光产生。结合其在较大的光生物反应器中的光异养生长,我们建议hpm91是重整衣藻以提高大规模系统光能效率的有价值的菌株。 (C)2019年中国科学院植物研究所。由Elsevier Ltd代表Hydrogen Energy Publications LLC发布。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号