首页> 外文期刊>International journal of hydrogen energy >TiO_2 nanoparticles with superior hydrogen evolution and pollutant degradation performance
【24h】

TiO_2 nanoparticles with superior hydrogen evolution and pollutant degradation performance

机译:具有出色的析氢和污染物降解性能的TiO_2纳米颗粒

获取原文
获取原文并翻译 | 示例
       

摘要

The human life faces serious energy shortage and environmental pollution problems, therefore developing a facile and environmental friendly strategy for synthesizing nanoparticles (NPs) with improved photocatalytic activity could pave the way for different applications. In the present study, one-pot/in-situ fluorine-free synthesis process has been examined toward the solvothermal production of anatase TiO2 nanoparticles with exposed facet orientation. This is an aim to achieve the excellent photocatalytic/photoelectrocatalytic performance. Most importantly addressing the global energy shortage, the synthesized TiO2 NPs represent superior performance in photoelectrocatalytic water splitting toward hydrogen production. The overpotential required to drive the hydrogen evolution reaction was -391, -346 and -283 mV vs. Ag/AgCl for P25, cubic and truncated octahedral NPs, respectively. Additionally, TiO2 NPs with exposed facets represent excellent photocatalytic performance toward environmental purification. As synthesized nanoparticles was examined via photocatalytic degradation of Acid Blue 5 and photo catalytic removal of NO gas. The enhanced photocatalytic and photoelectrocatalytic performance are associated to the effect of exposed facet orientation of final nanoparticles. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:人类生活面临严重的能源短缺和环境污染问题,因此,开发一种简便且环境友好的策略来合成具有改善的光催化活性的纳米粒子(NP)可以为不同的应用铺平道路。在本研究中,已经针对溶剂热生产具有裸露面取向的锐钛矿型TiO2纳米粒子,研究了一锅/原位无氟合成工艺。目的是获得优异的光催化/光电催化性能。最重要的是解决全球能源短缺的问题,合成的TiO2 NPs在光催化水分解为氢的过程中表现出优异的性能。对于P25,立方和截短的八面体NP,驱动氢释放反应所需的过电势分别为-391,-346和-283 mV,相对于Ag / AgCl。此外,具有裸露面的TiO2 NP对环境净化表现出出色的光催化性能。作为合成的纳米颗粒,通过酸性蓝5的光催化降解和光催化脱除NO气体进行了检查。增强的光催化和光电催化性能与最终纳米颗粒的暴露小平面取向的影响有关。 (C)2019氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号