首页> 外文期刊>International journal of hydrogen energy >Initial approaches in benchmarking and round robin testing for proton exchange membrane water electrolyzers
【24h】

Initial approaches in benchmarking and round robin testing for proton exchange membrane water electrolyzers

机译:质子交换膜水电解槽的基准测试和循环测试的初始方法

获取原文
获取原文并翻译 | 示例
       

摘要

As ever-increasing amounts of renewable electricity enter the energy supply mix on a regional, national and international basis, greater emphasis is being placed on energy conversion and storage technologies to deal with the oscillations, excess and lack of electricity. Hydrogen generation via proton exchange membrane water electrolysis (PEMWE) is one technology that offers a pathway to store large amounts of electricity in the form of hydrogen. The challenges to widespread adoption of PEM water electrolyzers lie in their high capital and operating costs which both need to be reduced through R&D. An evaluation of reported PEMWE performance data in the literature reveals that there are excessive variations of in situ performance results that make it difficult to draw conclusions on the pathway forward to performance optimization and future R&D directions. To enable the meaningful comparison of in situ performance evaluation across laboratories there is an obvious need for standardization of materials and testing protocols. Herein, we address this need by reporting the results of a round robin test effort conducted at the laboratories of five contributors to the IEA Electrolysis Annex 30. For this effort a method and equipment framework were first developed and then verified with respect to its feasibility for measuring water electrolysis performance accurately across the various laboratories. The effort utilized identical sets of test articles, materials, and test cells, and employed a set of shared test protocols. It further defined a minimum skeleton of requirements for the test station equipment. The maximum observed deviation between laboratories at 1 A cm(-2) at cell temperatures of 60 degrees C and 80 degrees C was 27 and 20 mV, respectively. The deviation of the results from laboratory to laboratory was 2-3 times higher than the lowest deviation observed at one single lab and test station. However, the highest deviations observed were one-tenth of those extracted by a literature survey on similar material sets. The work endorses the urgent need to identify one or more reference sets of materials in addition to the method and equipment framework introduced here, to enable accurate comparison of results across the entire community. The results further imply that cell temperature control appears to be the most significant source of deviation between results, and that care must be taken with respect to break-in conditions and cell electrical connections for meaningful performance data. (C) 2019 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.
机译:随着越来越多的可再生电力进入区域,国家和国际基础上的能源供应组合,越来越多的重点放在能量转换和存储技术上,以应对电力的波动,过剩和不足。通过质子交换膜水电解(PEMWE)产生氢是一项提供以氢形式存储大量电能的途径的技术。 PEM电解槽的广泛采用面临的挑战在于其高昂的资金和运营成本,这两者都需要通过研发来降低。对文献中报告的PEMWE性能数据的评估表明,原位性能结果存在过多差异,因此很难在性能优化和未来研发方向的途径上得出结论。为了使各个实验室的现场性能评估进行有意义的比较,显然需要对材料和测试协议进行标准化。在此,我们通过报告在IEA电解附件30的五个贡献者的实验室进行的循环测试工作的结果来满足这一需求。为此,首先开发了一种方法和设备框架,然后就其可行性进行了验证。在各个实验室中准确测量水的电解性能。这项工作利用了相同的测试商品,材料和测试单元,并采用了一组共享的测试协议。它进一步定义了测试站设备的最低要求框架。电池温度为60摄氏度和80摄氏度时,在1 A cm(-2)的实验室之间观察到的最大偏差分别为27和20 mV。实验室之间的结果偏差比在单个实验室和测试站观察到的最低偏差高2-3倍。但是,观察到的最高偏差是对相似材料集进行文献调查得出的偏差的十分之一。这项工作满足了除此处介绍的方法和设备框架之外,还急需识别一套或多套参考材料的迫切需要,以便能够在整个社区中准确比较结果。结果进一步暗示,电池温度控制似乎是结果之间最重要的偏差源,对于有意义的性能数据,必须注意磨合条件和电池电连接。 (C)2019由Elsevier Ltd代表Hydrogen Energy Publications LLC发布。

著录项

  • 来源
    《International journal of hydrogen energy》 |2019年第18期|9174-9187|共14页
  • 作者单位

    Natl Renewable Energy Lab, Golden, CO 80401 USA;

    Forschungszentrum Julich, IEK 3 Electrochem Proc Engn, D-52425 Julich, Germany;

    Fraunhofer Inst Solar Energy Syst ISE, D-D79110 Freiburg, Germany;

    German Aerosp Ctr, Inst Engn Thermodynam, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany;

    Proton OnSite, 10 Technol Dr, Wallingford, CT 06492 USA|Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA;

    Forschungszentrum Julich, IEK 3 Electrochem Proc Engn, D-52425 Julich, Germany;

    Natl Renewable Energy Lab, Golden, CO 80401 USA|Univ Palermo, I-90128 Palermo, Italy;

    Fraunhofer Inst Solar Energy Syst ISE, D-D79110 Freiburg, Germany;

    German Aerosp Ctr, Inst Engn Thermodynam, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany;

    German Aerosp Ctr, Inst Engn Thermodynam, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany;

    Proton OnSite, 10 Technol Dr, Wallingford, CT 06492 USA;

    Natl Renewable Energy Lab, Golden, CO 80401 USA;

    IEA Electrolysis Annex 30, Julich, Germany;

    Forschungszentrum Julich, IEK 3 Electrochem Proc Engn, D-52425 Julich, Germany|Rhein Westfal TH Aachen, Fuel Cells, Aachen, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Electrolysis; PEMWE; Benchmarking; Round robin; State-of-the-art; Protocol development;

    机译:电解;PEMWE;对标;循环法;最新技术;方案开发;
  • 入库时间 2022-08-18 04:19:51

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号