首页> 外文期刊>International journal of hydrogen energy >Flame morphology and self-acceleration of syngas spherically expanding flames
【24h】

Flame morphology and self-acceleration of syngas spherically expanding flames

机译:合成气球形膨胀火焰的火焰形态和自加速

获取原文
获取原文并翻译 | 示例
       

摘要

The self-acceleration of spherically expanding flames were investigated using a constant volume combustion chamber for CO/H-2/O-2/N-2 mixtures over a wide range of initial pressure from 0.2 to 0.6 MPa, CO/H-2 ratio from 50/50 to 10/90 and equivalence ratio from 0.4 to 1.5. The adiabatic flame temperature was kept constant by adjusting O-2/N-2 ratio at different equivalence ratios. Schlieren images were recorded to investigate the flame front evolution of spherically expanding flames. Local acceleration exponents were extracted using a proper equation to study the process of flame self-acceleration. Results show that the flame cells develop on the smooth flame fronts and finally reach fractal-like structures due to the hydrodynamic and diffusional-thermal instabilities, resulting in flame self-accelerative propagation. The critical Peclet number corresponding to the onset of self acceleration, Pe(cr) increases nonlinearly with the Markstein length, Ma. The observation further reveals that the onset of self-acceleration is mainly controlled by the diffusional-thermal effect. There exists two distinct flame propagation regimes in the self acceleration, namely quick transition accelerative and quasi self-similar accelerative regimes. The quick transition regime is controlled by the destabilization effect of hydrodynamic perturbation and stabilization effect of flame stretch. While the quasi self-similar regime is primarily affected by the cascading process of flame front cells controlled by hydrodynamic instability. The self-similar acceleration exponent, alpha(s) varies with the initial pressure and Lewis number, Le. The values of alpha(s) are measured to be 1.1-1.25 (smaller than 1.5), indicating the flame dose not attain self-turbulization. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:使用恒定体积的燃烧室研究了球形膨胀火焰的自加速,该燃烧室用于在0.2至0.6 MPa的宽初始压力,CO / H-2比范围内的CO / H-2 / O-2 / N-2混合物从50/50到10/90,当量比从0.4到1.5。通过以不同的当量比调节O-2 / N-2的比例,使绝热火焰温度保持恒定。记录了Schlieren图像,以研究球形膨胀火焰的火焰前沿演变。使用适当的方程式提取局部加速指数,以研究火焰的自加速过程。结果表明,由于水动力和扩散热不稳定性,火焰细胞在光滑的火焰前沿发展并最终达到分形结构,从而导致火焰自加速传播。对应于自加速开始的临界Peclet数Pe(cr)随着Markstein长度Ma非线性增加。观察结果进一步表明,自加速的发生主要受扩散热效应控制。在自加速中存在两种不同的火焰传播机制,即快速过渡加速机制和准自相似加速机制。快速过渡机制受流体动力扰动的去稳定作用和火焰拉伸的稳定作用控制。准自相似机制主要受水动力不稳定性控制的火焰前沿单元的级联过程影响。自相似加速度指数α随初始压力和路易斯数Le而变化。测量的α值为1.1-1.25(小于1.5),表明火焰剂量未达到自湍流。 (C)2018氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号