首页> 外文期刊>International journal of hydrogen energy >Thermodynamic development and design of a concentrating solar thermochemical water-splitting process for co-production of hydrogen and electricity
【24h】

Thermodynamic development and design of a concentrating solar thermochemical water-splitting process for co-production of hydrogen and electricity

机译:联合生产氢和电的聚光太阳能热化学分水工艺的热力学开发和设计

获取原文
获取原文并翻译 | 示例
       

摘要

A concentrating solar plant is proposed for a thermochemical water-splitting process with excess heat used for electricity generation in an organic Rankine cycle. The quasi-steady state thermodynamic model consisting of 23 components and 45 states uses adjustable design parameters to optimize hydrogen production and system efficiency. The plant design and associated thermodynamic model demonstrate that cerium oxide is suitable for thermochemical water-splitting cycles involving the co-production of hydrogen and electricity. Design point analyses at 900 W/m(2) DNI indicate that a single tower with solar radiation input of 27.74 MW and an aperture area of 9.424 m(2) yields 10.96 MW total output comprised of 5.55 MW hydrogen (Gibbs free energy) and 5.41 MW net electricity after subtracting off 22.0% of total power generation for auxiliary loads. Pure hydrogen output amounts to 522 tonne/year at 20.73 GWh/year (HHV) or 17.20 GWh/year (Gibbs free energy) with net electricity generation at 14.52 GWh/year using TMY3 data from Daggett, California, USA. Annual average system efficiency is 38.2% with the constituent hydrogen fraction and electrical fraction being 54.2% and 45.8%, respectively. Sensitivity analyses illustrate that increases in particle loop recuperator effectiveness create an increase in hydrogen production and a decrease in electricity generation. Further, recuperator effectiveness has a measurable effect on hydrogen production, but has limited impact on total system efficiency given that 81.1% of excess heat is recuperated within the system for electricity generation. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:提出了一种集中式太阳能发电厂,用于热化学水分解工艺,其中多余的热量用于有机朗肯循环中的发电。由23个组分和45个状态组成的准稳态热力学模型使用可调整的设计参数来优化制氢和系统效率。工厂的设计和相关的热力学模型表明,氧化铈适用于涉及氢和电联产的热化学水分解循环。以900 W / m(2)DNI进行的设计点分析表明,单塔的太阳辐射输入为27.74 MW,孔径面积为9.424 m(2),产生的总输出为10.96 MW,其中包括5.55 MW氢(吉布斯自由能)和减去辅助负载的总发电量的22.0%后的净电量为5.41 MW。使用来自美国加利福尼亚州达格特的TMY3数据,纯氢产量为522吨/年,为20.73 GWh /年(HHV)或17.20 GWh /年(吉布斯自由能),净发电量为14.52 GWh /年。年平均系统效率为38.2%,组成氢部分和电气部分分别为54.2%和45.8%。敏感性分析表明,提高颗粒回路换热器的效率会增加氢气的产生并减少发电量。此外,换热器的有效性对氢的产生具有可测量的影响,但是由于将81.1%的多余热量回收到发电系统中,因此对总系统效率的影响有限。 (C)2018氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号