首页> 外文期刊>International Journal of Heat and Mass Transfer >Laminar flow and heat transfer in a periodic trapezoidal channel with semi-circular cross-section
【24h】

Laminar flow and heat transfer in a periodic trapezoidal channel with semi-circular cross-section

机译:具有半圆形横截面的周期性梯形通道中的层流和热传递

获取原文
获取原文并翻译 | 示例
       

摘要

Computational fluid dynamics (CFD) has been used to study fully developed laminar flow and heat transfer behaviour in periodic trapezoidal channels with a semi-circular cross-section. The trapezoidal elements are characterised by their wavelength (2L), channel diameter (d), radius of curvature of bends (R_c), the amplitude (2A) and the length of the straight section (B) with results reported for Reynolds numbers (Re) up to 400, as well as for a range of geometric configurations (0.525 ≤ R_c/d ≤ 1.3, 3.6 ≤ L/d ≤ 12, 0.17 ≤ B/L ≤ 1, 0.125 ≤ A/L ≤ 1) at Re = 200. This generic geometry takes a variety of shapes with limiting forms of a regular square serpentine (B = 2A = L) and a zig-zag or saw-tooth (B → 0). The flow in these channels is characterised by the formation of Dean vortices following each bend. As the Reynolds number is increased, stronger vortical flow patterns emerge and these vortices lead to efficient fluid mixing and high rates of heat transfer. Constant wall heat flux (H2), constant axial heat flux with peripherally constant temperature (H1) and constant wall temperature (T) boundary conditions are examined for a fluid with a Prandtl number of 6.13. Higher rates of heat transfer with relatively small pressure loss penalty are found relative to fully developed flow in a straight pipe, with heat transfer enhancements of up to four at the highest Reynolds number. In addition to presenting channel enhancements the stackability of channels on a plate is considered. The concepts of area enhancement (based solely on geometric factors) and heat transfer intensification, the product of the heat transfer enhancement and the area enhancement, are introduced and used to compare different geometrical configurations. The swept zig-zag pathway provided the greatest intensification of heat transfer in a multi-channel plate structure.
机译:计算流体力学(CFD)已用于研究具有半圆形横截面的周期性梯形通道中充分发展的层流和传热行为。梯形元素的特征在于其波长(2L),通道直径(d),折弯曲率半径(R_c),幅度(2A)和笔直部分的长度(B),并报告了雷诺数(Re )最多400个,以及Re =时的一系列几何配置(0.525≤R_c / d≤1.3,3.6≤L / d≤12,0.17≤B / L≤1,0.125≤A / L≤1) 200.这种通用几何形状具有多种形状,并具有规则的方形蛇形(B = 2A = L)和锯齿形或锯齿形(B→0)的限制形式。这些通道中的流动的特征是每次弯曲后都会形成迪安涡流。随着雷诺数的增加,出现了更强的涡流模式,这些涡流导致有效的流体混合和较高的热传递率。对于普朗特数为6.13的流体,检查了恒定壁热通量(H2),具有周向恒定温度(H1)和恒定壁温(T)边界条件的恒定轴向热通量。相对于直管中充分发展的流动,发现了较高的传热速率和相对较小的压力损失损失,在最高雷诺数下,传热增强了多达四倍。除了提供通道增强以外,还考虑了通道在板上的可堆叠性。引入了面积增强(仅基于几何因素)和传热强化的概念,即传热增强和面积增强的乘积,并将其用于比较不同的几何构造。弯曲的锯齿形路径在多通道板结构中提供了最大的热传递强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号