首页> 外文期刊>International Journal of Heat and Mass Transfer >Hybrid modeling of interfacial region thermophysics and intrinsic stability of thin free liquid films
【24h】

Hybrid modeling of interfacial region thermophysics and intrinsic stability of thin free liquid films

机译:界面区域热物理与自由液膜固有稳定性的混合建模

获取原文
获取原文并翻译 | 示例
       

摘要

The film rupture process that dictates merging of adjacent bubbles is particularly important in nucleate boiling heat transfer, bubbly two-phase flow in small tubes, and the mechanisms that dictate the Leiden-frost transition. To understand the mechanisms of bubble merging in nanostructured boiling surfaces and in nanotubes, it is useful to explore film stability and onset of rupture at the molecular level. This paper reports the results of such an investigation using a hybrid analysis scheme that combines a new formulation of capillarity theory for free liquid films with molecular dynamics (MD) simulations that use similar interaction potentials. Two forms of our molecular film capillarity theory are developed here: one for non-polar fluids based on a Lennard-Jones interaction potential, and a second specifically for water using a modified treatment of the SPC/E interaction potential that accounts for water dipole interactions. The hybrid model has the advantage that the capillarity theory provides theoretical relationships among parameters that govern film structure and thermophysical behavior, while the companion MD simulations allow more detailed molecular level exploration of the film thermophysics. Results obtained with the hybrid model indicate that wave instability predominates as an onset of rupture mechanism for liquid films of macroscopic extent, but for free liquid films with nanoscale lateral extent (in, for example, nanostructured boiling surfaces), lack of core stability is more likely to be the mechanism. The implications of these predictions for film rupture and bubble merging in nanostructured surfaces and nanotubes are examined in detail.
机译:决定相邻气泡合并的薄膜破裂过程在成核沸腾传热,小管中气泡状两相流以及决定莱顿-霜转变的机理中特别重要。为了了解气泡在纳米结构沸腾表面和纳米管中合并的机理,在分子水平上探索膜的稳定性和破裂的开始是有用的。本文使用混合分析方案报告了这种研究的结果,该方案将针对游离液膜的毛细管理论的新公式与使用相似相互作用势的分子动力学(MD)模拟相结合。在这里,我们开发了两种形式的分子膜毛细作用理论:一种是基于Lennard-Jones相互作用势的非极性流体,另一种是通过对SPC / E相互作用势的改进处理来解决水偶极相互作用的第二种方法,专门用于水。 。混合模型的优势在于,毛细作用理论提供了控制薄膜结构和热物理行为的参数之间的理论关系,而伴随的MD模拟允许对薄膜热物理进行更详细的分子水平探索。混合模型获得的结果表明,对于宏观范围的液膜,波的不稳定性主要是破裂机制的开始,但是对于具有纳米级横向范围的自由液膜(例如,在纳米结构的沸腾表面),缺乏核稳定性的可能性更大。可能是机制。详细检查了这些预测对纳米结构表面和纳米管中的膜破裂和气泡合并的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号