首页> 外文期刊>International Journal of Heat and Mass Transfer >Effect of turbulence and devolatilization models on coal gasification simulation in an entrained-flow gasifier
【24h】

Effect of turbulence and devolatilization models on coal gasification simulation in an entrained-flow gasifier

机译:湍流和脱挥发分模型对气流床气化炉中煤气化模拟的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Numerical simulations of the oxygen-blown coal gasification process inside a generic entrained-flow gasifier are carried out. The Eulerian-Lagrangian approach is applied to solve the Navier-Stokes equations and the particle dynamics. Seven species transport equations are solved with three heterogeneous global reactions and two homogeneous reactions. Finite rates are used for the heterogeneous solid-to-gas reactions. Both finite rate and eddy-dissipation combustion models are calculated for each homogeneous gas-to-gas reaction, and the smaller of the two rates is used. Four different devolatilization models are employed and compared. The Kobayashi model produces slower devolatilization rate than the other models. The constant rate model produces the fastest devolatilization rate. The single rate model and the chemical percolation model produce moderate and consistent devolatilization rate. Slower devolatilization rate produces higher exit gas temperature and higher CO and CO_2 mass fractions, but lower H_2 and heating value, and hence, achieves lower gasification efficiency. Combustion of volatiles is modeled with two-stage global reactions with an intermediate stage via benzene.rnTurbulence models significantly affect the simulated results. Among five turbulence models employed, the standard k-ε and the RSM models give consistent results. The time scale for employing stochastic time tracking of particles also affects simulated result. Caution has to be exerted to select the appropriate time constant value. Smaller particles have a higher surface/volume ratio and react faster than larger particles. However, large particles possessing higher inertia could impinge on the opposing jet and change the thermal-flow filed and the reaction rates.
机译:对普通气流床气化炉内的吹氧煤气化过程进行了数值模拟。使用欧拉方法解决了Navier-Stokes方程和粒子动力学问题。用三个非均质的全局反应和两个均质的反应求解了七个物种迁移方程。有限速率用于异质固-气反应。对于每个均相的气-气反应,都计算了有限速率和涡耗燃烧模型,并且使用两种速率中较小的一种。使用并比较了四种不同的脱挥发分模型。 Kobayashi模型产生的脱挥发分速率比其他模型慢。恒定速率模型产生最快的脱挥发分速率。单速率模型和化学渗滤模型产生中等和一致的脱挥发分速率。较低的脱挥发分产生较高的出口气体温度和较高的CO和CO_2质量分数,但降低H_2和发热量,因此实现较低的气化效率。挥发物的燃烧是通过两阶段全局反应进行建模的,中间阶段通过苯进行。湍流模型显着影响模拟结果。在使用的五个湍流模型中,标准k-ε和RSM模型给出了一致的结果。采用粒子的随机时间跟踪的时间尺度也会影响模拟结果。必须谨慎选择适当的时间常数值。较小的颗粒具有较高的表面积/体积比,并且比较大的颗粒反应更快。但是,具有较高惯性的大颗粒可能会撞击到相反的喷嘴上,从而改变热流场和反应速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号