...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Visualization and evaporator resistance measurement for a groove-wicked flat-plate heat pipe
【24h】

Visualization and evaporator resistance measurement for a groove-wicked flat-plate heat pipe

机译:沟槽芯平板热管的可视化和蒸发器阻力测量

获取原文
获取原文并翻译 | 示例

摘要

This work experimentally studied the evaporation characteristics in a groove-wicked flat-plate heat pipe charged with water. The parallel, U-shaped grooves had a width of 0.25 mm and a depth of 0.16 mm. Uniform heating was applied to the copper base plate near one end, and a cooling water jacket was connected at the other end. The evaporator resistance was calculated based on the difference of the plate temperature and the vapor temperature respectively under and above the center of the heated zone. With stepwise increase of heat load, the behavior of the working fluid in the grooves was visualized and the evaporator resistances were measured. Above a certain heat load, longitudinal liquid recession with a steep-sloped liquid front could be visualized. Behind the short liquid front is the accommodation region where the meniscus appeared to anchor on the top corners of the groove walls. Under a thermally stable situation, independent longitudinal oscillations of the liquid front existed in different grooves, forming a constantly varying zigzag front line. With increasing heat load, the liquid fronts gradually left the heated zone, accompanied by increasing plate temperatures. The evaporator resistance first remained at a low value before local dryout appearing beyond a certain heat load and then increased in a growing pace in response to the expanding dryout zone. No boiling was observed in all present tests.
机译:这项工作通过实验研究了装满水的槽芯平板式热管的蒸发特性。平行的U形凹槽的宽度为0.25mm,深度为0.16mm。在一端附近对铜基板进行均匀加热,在另一端连接冷却水套。基于分别在加热区的中心之下和之上的板温度和蒸气温度的差来计算蒸发器阻力。随着热负荷的逐步增加,可以看到槽中工作流体的行为,并测量蒸发器的阻力。在一定的热负荷下,可以看到具有陡峭的液体前沿的纵向液体凹陷。短液体前端的后面是容纳区域,弯液面似乎固定在凹槽壁的顶角。在热稳定的情况下,液体前沿的独立纵向振荡存在于不同的凹槽中,形成了一个不断变化的之字形前沿。随着热负荷的增加,液体前沿逐渐离开加热区,并伴随着板温度的升高。蒸发器阻力首先保持在一个较低的值,然后局部变干现象出现超过一定的热负荷,然后响应于不断扩大的变干区域而以越来越快的速度增加。在所有目前的测试中均未观察到沸腾。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号