首页> 外文期刊>International Journal of Heat and Mass Transfer >Understanding transport mechanism of a self-sustained thermally driven oscillating two-phase system in a capillary tube
【24h】

Understanding transport mechanism of a self-sustained thermally driven oscillating two-phase system in a capillary tube

机译:了解毛细管中自持热驱动振荡两相系统的传输机理

获取原文
获取原文并翻译 | 示例
       

摘要

This paper makes an attempt to explain the self-sustained thermally-induced oscillations of a two-phase system consisting of an isolated confined liquid-vapor meniscus (a single liquid plug adjoining a vapor bubble) inside a circular capillary tube, the tube length being exposed to a net temperature gradient, thereby creating a continuous cycle of evaporation and condensation, leading to thermally induced auto-oscillations of the meniscus. This system represents the simplest 'unit-cell' version of a pulsating heat pipe (PHP). The fundamental understanding of its transport behavior leading to self-sustained oscillations is vital for building the hitherto non-existent mathematical models of the complete PHP system. First, visualization of the oscillations of the unit-cell has been done under controlled thermal boundary conditions. Here, a unique and novel understanding of the system dynamics has been achieved by real-time synchronization of the internal pressure measurement with high-speed videography. The contact angle hysteresis at the three-phase meniscus contact line during its upward and downward stroke plays a significant role in evaporation and condensation dynamics. Contrary to obvious interpretations, maximum pressure in the vapor bubble is achieved in the downward stroke, rather than the upward stroke. Thus, the system dynamics cannot be compared with gas-compression cycles; the presence of vapor coupled with transient phase-change processes give rise to singular transport phenomena. Such an interpretation of the meniscus motion and the resulting pressure cycles has not been considered by any of the existing mathematical models of PHPs. By simple scaling arguments, it is demonstrated that there is a high probability of metastable states existing in the system, which essentially point towards considering non-equilibrium evaporation and condensation models for predicting the thermal transport. A simple transient analytical model of thermal transport in the liquid film is developed which clearly explains the observed behavior. Existence of non-equilibrium conditions and there underlying effects on system dynamics need further exploration, both experimentally as well as analytically.
机译:本文试图解释两相系统的自持热诱导振荡,该两相系统由圆形毛细管内的一个隔离的密闭液体蒸汽弯月面(一个与蒸汽气泡相连的单个液体塞)组成。暴露于净温度梯度下,从而形成连续的蒸发和冷凝循环,从而导致热引起的弯月面自激振荡。该系统代表脉动热管(PHP)的最简单的“单元”版本。对导致自持振荡的传输行为的基本理解,对于建立迄今不存在的完整PHP系统数学模型至关重要。首先,已经在受控的热边界条件下完成了晶胞振荡的可视化。在这里,通过内部压力测量与高速摄影的实时同步,已经获得了对系统动力学的独特而新颖的理解。三相弯液面接触线在其向上和向下行程期间的接触角滞后在蒸发和冷凝动力学中起重要作用。与明显的解释相反,蒸气气泡中的最大压力是在向下冲程而不是向上冲程中获得的。因此,系统动力学无法与气体压缩循环相提并论。蒸汽的存在与瞬态相变过程的耦合会引起奇异的传输现象。任何现有的PHP数学模型都没有考虑过对弯液面运动和由此产生的压力周期的这种解释。通过简单的定标论证,证明了系统中存在亚稳态的可能性很高,这实质上指向考虑使用非平衡蒸发和冷凝模型来预测热传递。建立了一个简单的瞬态分析模型,该模型在液膜中进行了热传输,可以清楚地解释所观察到的行为。非平衡条件的存在以及对系统动力学的潜在影响都需要在实验和分析上进一步探索。

著录项

  • 来源
  • 作者单位

    Universite de Lyon, CNRS, France,INSA-Lyon, CETHIL, UMR5008, F-69621, Villeurbanne, France,Universite Lyon 1, UMR5008, CETHIL, F-69622, France;

    Universite de Lyon, CNRS, France,INSA-Lyon, CETHIL, UMR5008, F-69621, Villeurbanne, France,Universite Lyon 1, UMR5008, CETHIL, F-69622, France;

    Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India;

    Universite de Lyon, CNRS, France,INSA-Lyon, CETHIL, UMR5008, F-69621, Villeurbanne, France,Universite Lyon 1, UMR5008, CETHIL, F-69622, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Pulsating heat pipe; Oscillating meniscus; Non-equilibrium states; Scaling; Transient modeling;

    机译:脉动热管;半月板振荡;非平衡态;缩放瞬态建模;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号