...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Influence of particle size and shape on turbulent heat transfer characteristics and pressure losses in water-based nanofluids
【24h】

Influence of particle size and shape on turbulent heat transfer characteristics and pressure losses in water-based nanofluids

机译:粒径和形状对水基纳米流体湍流传热特性和压力损失的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We carry out extensive experimental studies of turbulent convective heat transfer of several water-based Al_2O_3, SiO_2, and MgO nanofluids with a nanoparticle volume fraction up to 4%. The experimental setup consists of an annular tube, where sub-atmospheric condensing steam is used to establish a constant wall temperature boundary condition, with nanofluid forced through the inner tube. To unravel the influence of particle shape and size to heat transfer we also present a detailed characterization of the nanofluids using Dynamic Light Scattering and Transmission Electron Microscopy techniques in situ. In agreement with previous studies, we find that the average convective heat transfer coefficients of nanofluids are typically enhanced by up to 40% when compared to the base fluid on the basis of constant Reynolds number in the turbulent regime, where Re =3000-10,000. However, the increase of the dynamic viscosity of nanofluids leads to significant pressure losses as compared to the base fluids. To account for this, the convective heat transfer efficiency η is determined by comparing the enhanced heat transfer performance to the increased pumping power requirement. When this has been properly taken into account, only the SiO_2 based nanofluid with smooth spherical particles (of average size 6.5±1.8nm) shows noticeable improvement in heat transfer with a particle volume fraction of 0.5-2%. Increasing the nanoparticle volume fraction beyond 2% enhances the heat transfer coefficient but at the same time lowers heat transfer efficiency η due to pressure losses, which result from the increased fluid density and viscosity. Through our nanoparticle size and shape analysis we find that in general small, spherical and smooth particles (less than 10 nm in size) are best in enhancing heat transfer and keeping the increase of pressure losses moderate. Our results show that the nanoscale properties of the particle phase must be carefully considered in heat transfer experiments.
机译:我们进行了多种水基Al_2O_3,SiO_2和MgO纳米流体的湍流对流换热的广泛实验研究,纳米颗粒的体积分数高达4%。实验装置由一个环形管组成,其中使用低于大气压的冷凝蒸汽来建立恒定的壁温边界条件,并迫使纳米流体通过内管。为了揭示颗粒形状和大小对热传递的影响,我们还使用动态光散射和透射电子显微镜技术就地对纳米流体进行了详细表征。与先前的研究一致,我们发现,在湍流状态下恒定的雷诺数(Re = 3000-10,000)下,与基础流体相比,纳米流体的平均对流传热系数通常提高40%。然而,与基础流体相比,纳米流体的动态粘度的增加导致显着的压力损失。考虑到这一点,通过将增强的热传递性能与增加的泵送功率需求进行比较来确定对流热传递效率η。当适当考虑到这一点时,只有具有光滑球形颗粒(平均尺寸为6.5±1.8nm)的SiO_2基纳米流体在传热方面具有显着的改善,颗粒体积分数为0.5-2%。将纳米粒子的体积分数增加到2%以上可提高热传递系数,但同时由于压力损失而降低了热传递效率η,这是由于流体密度和粘度增加而引起的。通过我们的纳米颗粒尺寸和形状分析,我们发现通常较小的球形和光滑颗粒(尺寸小于10 nm)在增强热传递和保持适度的压力损失增长方面是最佳的。我们的结果表明,在传热实验中必须仔细考虑颗粒相的纳米级性质。

著录项

  • 来源
  • 作者单位

    Aalto University School of Engineering, Department of Energy Technology, Applied Thermodynamics, P.O. Box 14400, 00076 Aalto, Finland;

    Aalto University School of Engineering, Department of Energy Technology, Applied Thermodynamics, P.O. Box 14400, 00076 Aalto, Finland;

    Aalto University School of Engineering, Department of Energy Technology, Applied Thermodynamics, P.O. Box 14400, 00076 Aalto, Finland;

    Aalto University School of Science, Department of Applied Physics, Molecular Materials, P.O. Box 15100, 00076 Aalto, Finland;

    Aalto University School of Science, Department of Applied Physics, Molecular Materials, P.O. Box 15100, 00076 Aalto, Finland;

    MatOx Oy, Erottajankatu 19 B, FIN-00130 Helsinki, Finland;

    MatOx Oy, Erottajankatu 19 B, FIN-00130 Helsinki, Finland;

    Aalto University School of Science, Department of Applied Physics and COMP CoE, P.O. Box 11000, FIN-00076 Aalto, Finland,Brown University, Department of Physics, P.O. Box 1843, Providence, RI 02912, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nanofluid; Nanoparticles; Convective heat transfer; Viscosity; Friction factor; Pressure loss;

    机译:纳米流体纳米颗粒;对流换热;粘度;摩擦系数;压力损失;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号