首页> 外文期刊>International Journal of Heat and Mass Transfer >Experimental and numerical investigation of unsteady impingement cooling within a blade leading edge passage
【24h】

Experimental and numerical investigation of unsteady impingement cooling within a blade leading edge passage

机译:叶片前缘通道内非定常冲击冷却的实验和数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

The cooling passage within the leading edge of a turbine blade is simulated using a cylindrical target channel supplied by 10 impinging jets, with exit flow in the axial direction, at one end of the passage. Values of the impingement Reynolds number, based on the jet diameter, are 10,000, 15,000, and 20,000. Thermochromic liquid crystals (TLC) are employed to measure transient, spatially-resolved surface Nusselt numbers, and a FLUENT solver, with a green-Gauss cells gradient method and SIMPLEC for pressure-velocity coupling, is employed for steady, half-steady, and unsteady predictions. Distributions of target surface Nusselt numbers, and predictions of flow characteristics, along with instantaneous and local time-averaged magnitudes of root-mean-square temperature fluctuations show that the most important factors which influence local, instantaneous target surface Nusselt number distributions are the target passage cross-flows, Kelvin-Helmholtz vortex structures, and the unsteadiness which is associated with these phenomena. Of particular importance are: (ⅰ) vortex structure skewness, as affected by greater bending of the impingement jet trajectories, which increases as passage cross-flows become more non-uniform, and also increase in intensity and unsteadiness, and (ⅱ) augmented shear which develops from the accumulated cross-flow which intensifies and augments the development of the Kelvin-Helmholtz vortices, which causes the unsteadiness associated with these vortices to increase, which further increases local time-averaged magnitudes of root-mean-square temperature fluctuations.
机译:涡轮叶片前缘内的冷却通道是使用圆柱形目标通道模拟的,该通道由通道的一端的10个冲击射流提供,轴向出口流向轴向。基于射流直径,冲击雷诺数的值为10,000、15,000和20,000。使用热致变色液晶(TLC)来测量在空间上解析的瞬态表面Nusselt数,使用FLUENT求解器(具有绿色高斯单元梯度法)和SIMPLEC进行压力-速度耦合,来实现稳态,半稳态和不稳定的预测。目标表面Nusselt数的分布以及流动特性的预测,以及均方根温度波动的瞬时和局部时间平均幅度表明,影响局部,瞬时目标表面Nusselt数分布的最重要因素是目标通道横流,Kelvin-Helmholtz涡结构以及与这些现象相关的不稳定。特别重要的是:(ⅰ)涡流结构的偏斜度,受冲击射流轨迹的更大弯曲影响,随着通道横流变得更加不均匀而增加,强度和不稳定性也增加,并且(and)剪切力增加它是由累积的交叉流发展而来,加剧了开尔文-亥姆霍兹涡流的发展,并加剧了这些涡流的不稳定性,从而进一步加剧了均方根温度波动的局部时间平均幅度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号