首页> 外文期刊>International Journal of Heat and Mass Transfer >Theory of non-adiabatic conical spray premixed flames with non-unity Lewis number
【24h】

Theory of non-adiabatic conical spray premixed flames with non-unity Lewis number

机译:具有非统一路易斯数的非绝热圆锥形喷雾预混火焰理论

获取原文
获取原文并翻译 | 示例
       

摘要

The structure of a curved premixed flame tip under the influence of external heat loss, fuel spray, and preferential diffusion is investigated using large activation energy asymptotics. Two flame structures, normal and inverted Bunsen flames, are considered. Two spray modes, completely and partially prevap-orized burning modes, are identified. Five parameters are used in the analysis, including the droplet size, amount of liquid-fuel loading, external heat loss, stretch, and Lewis number (Le). The internal heat transfer resulting from droplets gasifying provides internal heat loss and heat gain for rich and lean sprays, respectively. Stretch is negative for a normal Bunsen flame but positive for an inverted Bunsen flame. Stretch strengthens (or weakens) the burning intensity of the Le > 1 (or Le < 1) normal Bunsen flame but decreases (or increases) the burning intensity of the Le> 1 (or Le<1) inverted Bunsen flame. The burning intensity of a flame tip weakens when the curved flame experiences a larger amount of external heat loss and intensifies (or weakens) when the lean (or rich) spray has a smaller droplet size or a larger amount of liquid loading. For a lean methanol-spray normal Bunsen flame with Le > 1 or a rich methanol-spray inverted Bunsen flame with Le<1, closed tip solutions are obtained. Conversely, stretch weakens the burning intensities of lean methanol-spray inverted Bunsen flames with Le > 1, or rich methanol-spray normal Bunsen flames with Le < 1, eventually leading to tip opening. The opening becomes wider when the external heat loss increases, the droplet size decreases (or increases), or liquid loading increases (or decreases) for the rich (or lean) sprays. Note that for a lean methanol-spray normal (or inverted) Bunsen flame with Le > 1, if liquid loading is large enough and droplet size is sufficiently small, there is a flame transition from a normal (or inverted) Bunsen flame through a planar flame to an inverted (or normal) Bunsen flame. Finally, the critical value of droplet size, at which there exists a planar flame rather than a normal (or inverted) Bunsen flame, increases with increasing liquid loading or decreasing external heat loss.
机译:使用大的活化能渐近线研究了弯曲的预混火焰尖端在外部热量损失,燃料喷雾和优先扩散的影响下的结构。考虑了两种火焰结构,正常和本生火焰。确定了两种喷雾模式,即完全和部分预燃的燃烧模式。分析中使用了五个参数,包括液滴大小,液体燃料负载量,外部热损失,拉伸和路易斯数(Le)。液滴气化产生的内部传热分别为浓喷和稀喷提供了内部热损失和热量获取。对于正常的本生火焰,拉伸为负,但对于倒置的本生火焰,拉伸为正。拉伸会增强(或减弱)Le> 1(或Le <1)正常本生灯的燃烧强度,但会降低(或增加)Le> 1(或Le <1)倒置本生灯的燃烧强度。当弯曲的火焰经历较大的外部热损失时,火焰尖端的燃烧强度会减弱;当稀(或浓)喷雾的液滴尺寸较小或液体负载量较大时,火焰尖端的燃烧强度会增强(或减弱)。对于Le> 1的稀薄甲醇喷洒正常本生火焰或Le <1的浓甲醇喷洒倒立本生火焰,可获得密闭的尖端溶液。相反,拉伸会削弱Le> 1的稀薄甲醇喷淋的本生灯的燃烧强度,或者使Le <1的浓甲醇喷淋正常本生灯的燃烧强度降低,最终导致尖端张开。当外部热损失增加,液滴尺寸减小(或增大)或富液(或稀液)喷雾的液体负荷增大(或减小)时,开口变宽。请注意,对于Le> 1的稀薄的甲醇喷雾普通(或倒置)本生火焰,如果液体负载足够大且液滴尺寸足够小,则从普通(或倒置)本生火焰会通过平面发生火焰过渡火焰倒置(或正常)的本生火焰。最后,随着液体载荷的增加或外部热量的减少,存在平面火焰而不是正常(或反向)本生火焰的液滴尺寸的临界值会增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号