...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Using MRT lattice Boltzmann method to simulate gas flow in simplified catalyst layer for different inlet-outlet pressure ratio
【24h】

Using MRT lattice Boltzmann method to simulate gas flow in simplified catalyst layer for different inlet-outlet pressure ratio

机译:使用MRT格子Boltzmann方法模拟简化的催化剂层中不同进出口压力比下的气流

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Gas flow in catalyst layer is important as it is the place where the electrochemical reactions take place. But it is challenging because the size of the pores is less than one micron and gas flow in the catalyst layer is no longer continuum, the Knudsen number cannot be neglected. As a result, the wall-gas collision must be re-considered, meaning that in the macroscopic models, the absolute permeability of the catalyst layer for different gases varies. To investigate this, we will simplify the pore geometry in catalyst layer into a bundle of tubes whose diameters can be derived from the pore-size distribution of the 3D (focused ion beam) FIB images. A model for gas flow in each tube is then simulated, the flow rate in the small pores have high resistance than big one, large difference start after pore size bigger than 100 nm. Use the pore volume percentage with different pore size diameter and porosity, we have calculate the average cross section area of the catalyst layer and calculate the average flow rate based on them which is used for the permeability calculation later. This permeability value can reflect the permeability in the true catalyst. The results show that permeability of catalyst layer is not a constant but varies with Knudsen number, meaning that the permeability calculation in the microano scale is depend on the Knudsen number. Assuming a constant permeability for all the gases, as used in the available fuel cell models in literature, could give rise to significant errors.
机译:催化剂层中的气流很重要,因为它是发生电化学反应的地方。但是具有挑战性的是,由于孔的尺寸小于一微米,并且催化剂层中的气流不再连续,因此不能忽略克努森数。结果,必须重新考虑壁气碰撞,这意味着在宏观模型中,催化剂层对于不同气体的绝对渗透率会发生变化。为了对此进行研究,我们将简化催化剂层中的孔几何形状,使其成为一束管,其直径可以从3D(聚焦离子束)FIB图像的孔径分布中得出。然后模拟了每个管中的气体流动模型,小孔中的流速比大孔中的流速高,当孔尺寸大于100 nm时开始大的差异。使用具有不同孔径和孔隙率的孔体积百分比,我们已经计算出催化剂层的平均横截面积,并基于它们计算出平均流速,以用于稍后的渗透率计算。该渗透率值可以反映真实催化剂中的渗透率。结果表明,催化剂层的渗透率不是恒定的而是随克努森数变化的,这意味着在微米/纳米尺度上的渗透率计算取决于克努森数。假设在文献中可用的燃料电池模型中使用的所有气体的渗透率恒定,则可能会导致重大误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号