首页> 外文期刊>International Journal of Heat and Mass Transfer >Flow boiling in microgravity: Part 1 - Interfacial behavior and experimental heat transfer results
【24h】

Flow boiling in microgravity: Part 1 - Interfacial behavior and experimental heat transfer results

机译:微重力流沸腾:第1部分-界面行为和实验传热结果

获取原文
获取原文并翻译 | 示例
       

摘要

Space agencies worldwide are being confronted with the challenges of more distant manned space missions, which will demand greater energy efficiency and reduced weight and volume. One method being considered to reduce the weight and volume of a long duration mission spacecraft is to replace present single-phase Thermal Control Systems (TCSs) with ones that rely on flow boiling and condensation. This transition will require a thorough understanding of the influence of reduced gravity on flow boiling and condensation, and the development of predictive tools for both. This study is the first part of a two-part study investigating flow boiling of FC-72 in microgravity, which is simulated in a series of parabolic flight maneuvers. Flow boiling experiments are conducted in a rectangular channel fitted with two opposite heating walls. The operating conditions include liquid inlet velocities of 0.1-1.9 m/s, liquid mass velocities of 224.2-3347.5 kg/m~2 s, and inlet subcoolings ranging from 2.8 to 8.1 ℃. The study includes both high-speed video analysis of interfacial features and heat transfer measurements. A dominant wavy vapor layer behavior is encountered for most operating conditions. Boiling is sustained mostly in 'wetting fronts' corresponding to contact regions between the wave troughs and the wall, and abated near the wave peaks. During a flight parabola, the heated wall temperatures decrease slightly as the aircraft enters the hypergravity ascent phase, then increase slightly during the microgravity phase, and decrease once again during the hypergravity descent. These temperature variations point to enhancement in flow boiling heat transfer with increasing gravity, and conversely a reduction with microgravity.
机译:世界各地的航天机构都面临着更远距离的载人航天飞行任务的挑战,这将要求更高的能源效率和更轻的体积。一种被认为减轻长期任务航天器重量和体积的方法是用依靠流沸腾和冷凝的系统代替目前的单相热控制系统(TCS)。这种过渡将需要彻底了解重力降低对流动沸腾和凝结的影响,并为这两者开发预测工具。这项研究是一项由两部分组成的研究的第一部分,该研究研究了FC-72在微重力下的流动沸腾,并在一系列抛物线飞行演习中对其进行了模拟。在装有两个相对的加热壁的矩形通道中进行沸腾实验。操作条件包括:液体入口速度为0.1-1.9 m / s,液体质量速度为224.2-3347.5 kg / m〜2 s,入口过冷度为2.8至8.1℃。该研究包括界面特征的高速视频分析和传热测量。在大多数操作条件下,会遇到主要的波浪状蒸汽层行为。沸腾大部分持续在与波谷和壁之间的接触区域相对应的“湿润前沿”上,并在波峰附近减弱。在抛物线飞行过程中,随着飞机进入超重力上升阶段,加热的壁温会略有下降,然后在微重力阶段会略微上升,在超重力下降时会再次下降。这些温度变化表明,随着重力的增加,流沸腾传热的增强,反之,随着微重力的降低。

著录项

  • 来源
  • 作者单位

    Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL), School of Mechanical Engineering, 585 Purdue Mall, West Lafayette, IN 47907, USA;

    Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL), School of Mechanical Engineering, 585 Purdue Mall, West Lafayette, IN 47907, USA;

    Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL), School of Mechanical Engineering, 585 Purdue Mall, West Lafayette, IN 47907, USA;

    NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135, USA;

    NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135, USA;

    NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135, USA;

    NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135, USA;

    NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135, USA;

    Vantage Partners, LLC, 3000 Aerospace Parkway, Brook Park, OH 44142, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Microgravity; Flow boiling; Interfacial behavior;

    机译:微重力流沸腾;界面行为;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号