首页> 外文期刊>International Journal of Heat and Mass Transfer >Mathematical modeling and combustion characteristic evaluation of a flue gas recirculation iron ore sintering process
【24h】

Mathematical modeling and combustion characteristic evaluation of a flue gas recirculation iron ore sintering process

机译:烟气再循环铁矿石烧结过程的数学建模和燃烧特性评估

获取原文
获取原文并翻译 | 示例
       

摘要

Flue gas recirculation sintering (FGRS) technology has been applied for two decades with the aim of reducing pollutant emissions. Compared with the conventional sintering (CS), the changes of input gas conditions may influence the bed combustion process greatly. Mathematical models have been developed to predict sintering behavior quantitatively, but few of the previous work focused on FGRS process. In this study, a multiphase theory-based mathematical model is established. This model considers nine kinds of major physicochemical reactions, in which six modes of gaseous reactions make it more comprehensive and accurate to model FGRS process. Heat transfer within/between different solid and gas phases are modeled in better manners. Geometric changes caused by reactive-factors are modeled in simple terms. Sub-models are available to simulate the effects of the temperature, gas supply, composition and content of recirculated gas on combustion characteristics in the sintering bed. Good agreements between simulated and measured results have been obtained from contrasting to six sinter pot tests based on FGRS technology. Four combustion parameters are selected to evaluate quantitatively the advantages and potential problems of FGRS technology. Results show that the flatter maximum temperature (MaxT) profile for FGRS compared with that for CS implies a stronger tumble strength of the sintered ore. The broader MaxT and combustion zone thickness (CZT) curve indicate a higher degree of melt fraction, together with a lower FFS and productivity. To better investigation, further parameter simulation and process optimization of FGRS technology is necessary.
机译:烟气再循环烧结(FGRS)技术已经应用了二十年,目的是减少污染物排放。与常规烧结(CS)相比,输入气体条件的变化可能会极大地影响床层燃烧过程。已经开发了数学模型来定量地预测烧结行为,但是先前的工作很少集中在FGRS过程上。在这项研究中,建立了一个基于多相理论的数学模型。该模型考虑了9种主要的物理化学反应,其中的6种气态反应模式使FGRS过程的建模更加全面,准确。以更好的方式对不同固相/气相之间/之间的热传递进行建模。由反应因子引起的几何变化可以用简单的术语建模。子模型可用于模拟温度,气体供应,再循环气体的组成和含量对烧结床燃烧特性的影响。通过与基于FGRS技术的六个烧结罐测试进行对比,已经获得了模拟结果与测量结果之间的良好一致性。选择四个燃烧参数以定量评估FGRS技术的优势和潜在问题。结果表明,与CS相比,FGRS的最高温度(MaxT)曲线更平坦,这意味着烧结矿的滚落强度更高。 MaxT和燃烧区厚度(CZT)曲线越宽,表明熔体分数越高,FFS和生产率越低。为了更好地进行调查,必须对FGRS技术进行进一步的参数仿真和工艺优化。

著录项

  • 来源
  • 作者单位

    School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China;

    School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China,Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, University of Science and Technology Beijing, Beijing 100083, China;

    School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China;

    School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China;

    Research Institute of Baoshan Iron and Steel Co., Ltd., Shanghai 201900, China;

    School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China;

    School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Flue gas recirculation; Iron ore sintering; Mathematical modeling; Sinter pot test; Combustion characteristics;

    机译:烟气再循环;铁矿石烧结;数学建模;烧结锅测试;燃烧特性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号