首页> 外文期刊>International Journal of Heat and Mass Transfer >Vapour cooling of poorly conducting hot substrates increases the dynamic Leidenfrost temperature
【24h】

Vapour cooling of poorly conducting hot substrates increases the dynamic Leidenfrost temperature

机译:蒸汽冷却导热不良的基材会增加动态莱顿弗罗斯特温度

获取原文
获取原文并翻译 | 示例
       

摘要

A drop impacting a smooth solid surface heated above the saturation temperature can either touch it (contact boiling) or not (film boiling), depending on the surface temperature. The heat transfer is greatly reduced in the latter case by the insulating vapour layer under the drop. In contrast to previous studies, here we use a relatively poor thermally conducting glass surface. Using a total internal reflection method, we visualise the wetting dynamics of the drop on the surface. We discover a new touch-down process, in which liquid-solid contact occurs a few hundred microseconds after the initial impact. This phenomenon is due to the cooling of the solid surface by the generation of vapour. We propose a model to account for this cooling effect, and validate it experimentally with our observations. The model leads to the determination of a thermal time scale (about 0.3 ms for glass) for the cooling of the solid. We conclude that when the impact time scale of the drop on the substrate (drop diameter/impact velocity) is of the order of the thermal time scale or larger, the cooling effect cannot be neglected and the drop will make contact in this manner. If the impact time scale however is much smaller than the thermal time scale, the surface remains essentially isothermal and the impact dynamics is not affected.
机译:取决于表面温度,影响加热到高于饱和温度的光滑固体表面的水滴可能会接触(接触沸腾)或不接触(薄膜沸腾)。在后一种情况下,通过液滴下方的绝缘蒸汽层大大降低了热传递。与以前的研究相比,这里我们使用相对较差的导热玻璃表面。使用全内反射方法,我们可以看到液滴在表面上的润湿动力学。我们发现了一种新的着陆过程,其中在最初撞击后几百微秒内发生液固接触。这种现象是由于蒸气的产生使固体表面冷却所致。我们提出了一个模型来说明这种冷却效果,并根据我们的观察进行实验验证。该模型导致确定用于冷却固体的热时间标度(对于玻璃约为0.3 ms)。我们得出的结论是,当液滴对基板的冲击时间尺度(液滴直径/撞击速度)约为热时间尺度或更大时,冷却效果无法忽略,液滴将以这种方式接触。然而,如果冲击时间标度比热时间标度小得多,则表面基本上保持等温,并且冲击动力学不受影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号