首页> 外文期刊>International Journal of Heat and Mass Transfer >Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams
【24h】

Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams

机译:使用相变材料和金属泡沫的锂离子电池热管理系统的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

This article investigates thermal management systems (TMS) of lithium-ion battery made from pure octadecane, pure gallium and octadecane-Al foam composite materials by numerical simulations. Porosity of the Al foam changes from 0.97 to 0.925 and 0.88. The numerical simulation is based on SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm, staggered grid, and temperature transforming model. Three different heat fluxes of 400, 600, and 800 W/m~2 at the left and right boundaries of the computational domain are considered to simulate the heat released from the battery. Different TMS's thicknesses have been studied. The time variations of battery surface temperatures are compared with different phase change materials (PCMs) to compare the effectivity of the TMS. Results show that the discharge time before the average battery surface temperature reaches above 60 ℃ increases with an increasing thickness (between 7.5 and 15 mm) of the TMS. The result with pure octadecane indicates that the discharge time is increased by 87 percent when the thickness of the TMS is increased from 7.5 mm to 15 mm. The surface temperature of the battery is more uniform and the discharge time is 4.7 times longer when gallium is used as the PCM, compared with those with octadecane for all thicknesses at the heat flux of 600 W/m~2 and thickness of 12.5 mm. Adding metal matrix of 0.88 porosity to the octadecane led to 7.3 times longer discharge time compared to the pure octadecane. It is also found that adding the Al foam to octadecane remarkably increases the uniformity of the battery surface temperature, i.e. the maximum temperature difference at the surface of the battery decreased from 25 ℃ with pure octadecane to 2 × 10~(-4) ℃ with octadecane-Al foam composite (0.88 porosity) after the battery discharges for 1000 s at 600 W/m~2 heat flux.
机译:本文通过数值模拟研究了由纯十八烷,纯镓和十八烷-Al泡沫复合材料制成的锂离子电池的热管理系统(TMS)。泡沫铝的孔隙率从0.97变为0.925和0.88。数值模拟基于SIMPLE(压力链接方程的半隐式方法)算法,交错网格和温度转换模型。在计算域的左边界和右边界处,分别考虑了400、600和800 W / m〜2的三种不同的热通量,以模拟从电池释放的热量。已经研究了不同的TMS厚度。将电池表面温度的时间变化与不同的相变材料(PCM)进行比较,以比较TMS的有效性。结果表明,平均电池表面温度达到60℃以上之前的放电时间随TMS厚度的增加(在7.5和15 mm之间)而增加。纯十八烷的结果表明,当TMS的厚度从7.5 mm增加到15 mm时,放电时间增加了87%。当在600 W / m〜2的热通量和12.5 mm的厚度下使用镓时,电池的表面温度更加均匀,而使用镓作为PCM时,放电时间要长4.7倍。向十八烷中添加孔隙率为0.88的金属基质比纯十八烷的放电时间长7.3倍。还发现,在十八烷中添加泡沫铝可显着提高电池表面温度的均匀性,即,电池表面的最大温差从纯十八烷的25℃降低至18℃的2×10〜(-4)℃。电池以600 W / m〜2的热通量放电1000 s后的十八碳铝泡沫复合材料(孔隙率0.88)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号