首页> 外文期刊>International Journal of Heat and Mass Transfer >Numerical modelling of bubble growth in microchannel using Level Set Method
【24h】

Numerical modelling of bubble growth in microchannel using Level Set Method

机译:水平集法在微通道内气泡生长的数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Development of more efficient thermal management systems is of prime importance not only in the context of environmental and energy concerns, but also due to ever-increasing demands of computational power. Flow boiling in microchannels holds a lot of promise and is capable of removing high heat fluxes. However, the physics behind the heat transfer and fluid flow during flow boiling at micro scales is not completely understood. Various studies have been performed to classify the flow regimes and identify the dominant mode of heat transfer in two phase flow through microchannels. In the present work, a numerical study is performed to investigate the bubble dynamics in a confined microchannel. A DGLSM (Dual-Grid Level Set Method) based numerical model is used to capture the unsteady bubble interface dynamics. The Navier-Stokes equation is being solved using Finite Volume Method (FVM) based Semi-Explicit Pressure Projection Method. The effect of parameters namely contact angle, surface tension, wall superheat, Reynolds number and system pressure on the bubble dynamics and bubble growth rates is investigated. Three distinct stages of heat transfer corresponding to the rapid reduction, stabilization and enhancement of evaluated Nusselt number are identified from the parametric investigation. The results show that the system pressure plays a vital role in controlling the bubble shape, as compared to remaining parameters.
机译:开发更高效的热管理系统不仅在环境和能源方面,而且由于计算能力的需求不断增长,都至关重要。微通道中的沸腾沸腾具有很大的前景,并且能够去除高热通量。然而,在微观尺度上的沸腾过程中,传热和流体流动背后的物理学尚未完全被理解。已经进行了各种研究以对流态进行分类,并确定在通过微通道的两相流中传热的主要模式。在目前的工作中,进行了数值研究以研究密闭微通道中的气泡动力学。基于DGLSM(双网格级别设置方法)的数值模型用于捕获不稳定的气泡界面动力学。使用基于有限体积法(FVM)的半显式压力投影法求解Navier-Stokes方程。研究了接触角,表面张力,壁过热,雷诺数和系统压力等参数对气泡动力学和气泡生长速率的影响。从参数研究中确定了与热传递的快速减少,稳定和增强相对应的三个不同的传热阶段。结果表明,与其余参数相比,系统压力在控制气泡形状方面起着至关重要的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号