首页> 外文期刊>International Journal of Heat and Mass Transfer >Flow of a monatomic rarefied gas over a circular cylinder: Calculations based on the ab initio potential method
【24h】

Flow of a monatomic rarefied gas over a circular cylinder: Calculations based on the ab initio potential method

机译:单原子稀有气体在圆柱体上的流动:基于从头算势法的计算

获取原文
获取原文并翻译 | 示例
       

摘要

Two-dimensional flows of argon and helium over a circular cylinder are calculated by the Direct Simulation Monte Carlo (DSMC) method in the range of the free stream Mach number Ma_∞ from 0.5 to 10 in nearly free molecular, transitional, and nearly continuum flows. In DSMC simulations, inter-particle collisions are calculated with the ab initio (AI) potential method based on the interatomic interaction potentials established in quantum mechanical calculations. It is shown that the AI potential method enables computationally efficient simulations of multidimensional rarefied gas flows without introducing semi-empirical models of collision cross sections. The calculated values of the drag C_D and heat flux C_Q coefficients of the cylinder for Ar and He at the same values of Ma_∞, rarefaction parameter, and surface-to-free-stream temperature ratio are found to be different in less than 1%, ensuring small sensitivity of C_D and C_Q to the species of a monatomic gas. The simulation results obtained with the AI potential method are systematically compared with results obtained with the hard sphere (HS) molecular model. It is found that the choice of the HS diameter based on the condition of the identical viscosity of the real and HS gases at the free stream temperature ensures calculations of C_D and C_Q in sub- and supersonic flows at Ma_∞⩽2 with errors less than 3% and 6.5%, correspondingly. For hypersonic flows, this choice of the HS diameter is unsatisfactory and results in the errors up to 7% in C_D and 28% in C_Q. A semi-empirical rule that defines an optimum HS diameter in super- and hypersonic flows is suggested. With the use of this rule, the HS model is capable of predicting C_D and C_Q with errors less than 1% and 3%, correspondingly, and also provides a good accuracy in calculations of local flow parameters.
机译:通过直接模拟蒙特卡罗(DSMC)方法,在近似自由分子,过渡和近似连续流的自由流马赫数Ma_∞从0.5到10的范围内,计算了圆柱上氩气和氦气的二维流动。 。在DSMC模拟中,基于量子力学计算中建立的原子间相互作用势,使用从头算(AI)势能方法计算粒子间碰撞。结果表明,AI势方法可以在不引入碰撞截面半经验模型的情况下,对多维稀薄气流的计算进行高效仿真。发现在相同的Ma_∞值,稀疏参数和表面自由流温度比相同的情况下,Ar和He的气缸阻力C_D和热通量C_Q系数的计算值相差不到1% ,确保C_D和C_Q对单原子气体物种的敏感性较小。将AI势方法获得的模拟结果与硬球(HS)分子模型获得的结果进行系统地比较。已经发现,基于自由流温度下的真实气体和HS气体的粘度相同的条件来选择HS直径,可确保在Ma_∞⩽2的亚声速和超音速流中计算C_D和C_Q,误差小于分别为3%和6.5%。对于高超声速流,HS直径的这种选择不能令人满意,并且导致C_D误差高达7%,C_Q误差高达28%。建议使用半经验法则来定义超音速和超音速流中的最佳HS直径。通过使用此规则,HS模型能够以小于1%和3%的误差分别预测C_D和C_Q,并且在计算局部流量参数时也具有良好的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号