首页> 外文期刊>International Journal of Heat and Mass Transfer >Mechanistic modeling of the liquid film shape and heat transfer coefficient in annular-regime microchannel flow boiling
【24h】

Mechanistic modeling of the liquid film shape and heat transfer coefficient in annular-regime microchannel flow boiling

机译:环形微通道流动沸腾过程中液膜形状和传热系数的力学建模

获取原文
获取原文并翻译 | 示例
       

摘要

A methodology is proposed for predictive modeling of the liquid-gas interface shape and saturated flow boiling heat transfer coefficient in two-phase microchannel flows within the annular regime. The mechanistic model accounts for the effects of surface tension and interface curvature, gravity, and shear stress in determining the liquid film shape; one-dimensional conduction is assumed to occur across the variable-thickness film to calculate wall heat transfer coefficients locally along the channel length. Model performance is benchmarked against 251 experimentally measured heat transfer coefficient values taken from the literature for annular-regime flow boiling in microchannels of a rectangular cross-section. These data are successfully predicted with a mean absolute error of 21.7%, and 72.1% of the points lie within an error band of ±30%. The match to data is poorest at lower vapor qualities corresponding to the onset of the annular regime, for which the heat transfer coefficient is underpredicted; an experimental investigation is performed to better understand the disparity under these operating conditions. Liquid film shapes are measured during adiabatic annular flow through microchannels of square cross-section for a range of channel hydraulic diameters (160 µm, 510 µm, 1020 µm) and operating conditions, so as to control the void fraction and Weber number of the flow. Using air and water as the working gas and liquid, respectively, trends in film behavior are identified and compared against model predictions. The experimental findings reveal the non-negligible impact of capillary pumping on the interface morphology at the onset of the annular regime.
机译:提出了一种用于预测环形区域内两相微通道流中液-气界面形状和饱和流沸腾传热系数的建模方法。力学模型在确定液膜形状时考虑了表面张力和界面曲率,重力和剪切应力的影响。假定在厚度可变膜上发生一维传导,以沿通道长度局部计算壁的传热系数。模型性能以251个实验测量的传热系数值为基准,该值从文献中获取,用于在矩形横截面的微通道中进行环形流沸腾。这些数据已成功预测,平均绝对误差为21.7%,而72.1%的点位于±30%的误差带内。在较低的蒸汽质量下,与数据的匹配性最差,这与环形状态的开始相对应,因为后者的传热系数被低估了。为了更好地理解这些操作条件下的差异,进行了实验研究。在绝热环形流动通过方形截面微通道的过程中,测量一定范围的通道水力直径(160 µm,510 µm,1020 µm)和工作条件下的液膜形状,从而控制流量的空隙率和韦伯数。分别使用空气和水作为工作气体和液体,可以确定薄膜行为的趋势,并将其与模型预测值进行比较。实验结果表明,在环形状态开始时,毛细管泵送对界面形态的影响不可忽略。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2017年第11期|841-851|共11页
  • 作者单位

    Cooling Technologies Research Center, an NSF IUCRC, School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, United States;

    Cooling Technologies Research Center, an NSF IUCRC, School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, United States;

    Cooling Technologies Research Center, an NSF IUCRC, School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Annular regime; Heat transfer performance; Liquid film thickness; Mechanistic model; Two-phase microchannel flow;

    机译:环形制度;传热性能;液膜厚度;机械模型;两相微通道流;
  • 入库时间 2022-08-18 00:18:02

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号