...
首页> 外文期刊>International Journal of Heat and Mass Transfer >CFD simulation of a concentrated salt nanofluid flow boiling in a rectangular tube
【24h】

CFD simulation of a concentrated salt nanofluid flow boiling in a rectangular tube

机译:矩形管中浓盐纳米流体沸腾的CFD模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Improvement of heat transfer and critical heat flux (CHF) via nanofluid in pool boiling is well known. Flow boiling is usually represented by heat transfer correlations. But in the case of a concentrated salt solution nanofluid, there is no suitable representation. A model is generated using commercial CFD code with additional user defined function, (UDF) to address this for the case of determining the heat and mass transfer in a boiler duct for a vapour absorption refrigerator. Computational fluid dynamics (CFD) simulations are performed to assess the effect of varying nanoparticle concentrations, fluid velocity and boiler temperature on the boiling and phase change characteristics of the system. Four phases are treated in this case, which were liquid acetone, vapour acetone, liquid Acetone/ZnBr2solution and solid nanoparticles cloud. Zinc oxide nanoparticles are represented as a cloud-like phase in the mixture. In addition, this study evaluates the key characteristics of the nanofluid system, and how the different components and phases behave when the single component evaporates. Previous research concentrates on water based fluids or commonly found refrigerants and heat transfer fluids. In this work the process was modelled using ANSYS® Fluent V.15 using the mixture multiphase flow model, however, the volume of fluid (VOF) method is also used to show the behaviour of the vapour phase. A UDF was applied from the literature (LEE, 1980) for boiling of nanofluids to model the mass transfer on boiling. It was found that increase in nanoparticle loading (0, 0.1, 0.3, 0.5 & 1 vol%) leads to an increase in the exiting vapour volume fraction and the heat transfer coefficient. This is primarily due to an increase in the heat transfer in the system due to the increased thermal conductivity in the nanofluid. Incremental increases in the boiler temperature (330, 333, 335 K) creates an increase in both vapour volume fraction and heat transfer coefficient because the process still in the nucleate boiling which, the heat flux increase with increasing the temperature difference. This new approach for the four phase system is capable to demonstrating concentrated salt solution nanofluid boiling.
机译:通过池沸腾中的纳米流体改善传热和临界热通量(CHF)是众所周知的。流动沸腾通常由传热相关性表示。但是在浓盐溶液纳米流体的情况下,没有合适的表示。使用具有附加用户定义功能(UDF)的商业CFD代码生成模型,以解决在确定蒸汽吸收式制冷机的锅炉管道中的热量和质量传递的情况。执行计算流体动力学(CFD)模拟以评估变化的纳米颗粒浓度,流体速度和锅炉温度对系统沸腾和相变特性的影响。在这种情况下,要处理四个相,分别是液体丙酮,气相丙酮,液体丙酮/ ZnBr2溶液和固体纳米颗粒云。氧化锌纳米颗粒在混合物中表示为云状相。此外,这项研究评估了纳米流体系统的关键特性,以及当单一组分蒸发时不同组分和相的行为。先前的研究集中于水基流体或常见的制冷剂和传热流体。在这项工作中,使用ANSYS Fluent V.15使用混合多相流模型对过程进行了建模,但是,流体体积(VOF)方法也用于显示气相的行为。从文献(LEE,1980年)开始使用UDF进行纳米流体的沸腾,以模拟沸腾过程中的传质。已经发现,纳米颗粒负载量(0、0.1、0.3、0.5和1体积%)的增加导致出口蒸气体积分数和传热系数的增加。这主要是由于纳米流体中导热系数的增加,系统中的传热增加。锅炉温度(330、333、335 K)的增量增加会导致蒸气体积分数和传热系数的增加,因为该过程仍处于成核沸腾状态,随着温度差的增加,热通量也会增加。这种用于四相系统的新方法能够证明浓盐溶液纳米流体的沸腾。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号