首页> 外文期刊>International Journal of Heat and Mass Transfer >Sub-channel flow regime maps in vertical rod bundles with spacer grids
【24h】

Sub-channel flow regime maps in vertical rod bundles with spacer grids

机译:带有间隔栅的垂直杆束中的子通道流态图

获取原文
获取原文并翻译 | 示例
       

摘要

The accurate prediction of thermal-hydraulic parameters is based on the flow regime maps for rod bundle, which is important for the safety of nuclear reactor. An air-water two phase flow experiment has been performed to study the sub-channel flow regime (SCFR) maps in 5 × 5 rod bundles section with two distinct spacer grids, including simplified spacer grid (SSG) and mixing vane spacer grid (MVSG). To obtain the objective SCFR maps in rod bundles, a sub-channel impedance void meter is newly developed to measure the time series void fraction in sub-channels. Besides, the random forest clustering algorithm has been adopted to identify the sub-channel flow regimes objectively based on a training sample and 13 selected feature values of time series void fraction. The feature values include mean value, standard deviation value, sample entropy value and 10 proportion values. In this way, the objective sub-channel flow regime maps are obtained at four different locations with different spacer grids. Distinct features have been observed for different SCFRs. As for the SCFR transitions in different sub-channels over the same cross-section, almost all of them arise in the inner sub-channel firstly for the effect of casing tube. Moreover, the dissipation length of spacer grid is larger than 19.5L/D. In the influencing region of spacer grid, the transition from cap bubbly to cap turbulent flow occurs in the corner sub-channel at 19.5L/Ddownstream of spacer grid firstly and then at 6.8L/Dfor low liquid velocity, while firstly occurs at 6.8L/Dfor high liquid velocity. The magnitude of the spacer grid effect on SCFR transition depends on the superficial liquid and gas velocity, as well as the structure of spacer grid for current flow conditions. Only Liu and Hibiki’s model is applicable for the transition from bubbly to cap bubbly flow in sub-channel. Therefore, new transition models or correlations should be developed for other sub-channel flow regime transitions.
机译:热工水力参数的准确预测是基于棒束的流态图,这对于核反应堆的安全至关重要。进行了水-水两相流动实验,研究了5×5棒束截面中具有两个不同的隔离格的子通道流态(SCFR)图,其中包括简化的隔离格(SSG)和混合叶片隔离格(MVSG) )。为了获得棒束中的客观SCFR映射,新开发了子通道阻抗空隙仪来测量子通道中的时间序列空隙率。此外,采用随机森林聚类算法,根据训练样本和时间序列空分分数的13个选定特征值,客观地识别子通道流态。特征值包括平均值,标准偏差值,样本熵值和10个比例值。以此方式,在具有不同间隔物栅格的四个不同位置处获得客观子通道流动状态图。对于不同的SCFR,已经观察到不同的特征。对于同一横截面上不同子通道中的SCFR过渡,首先几乎所有它们都出现在内部子通道中,这是由于套管的作用。此外,隔离栅的耗散长度大于19.5L / D。在间隔格的影响区域,从顶盖起泡向顶盖湍流的过渡首先在间隔格的下游以19.5L / D的角子通道发生,然后在低液速下以6.8L / D发生,而首先在6.8L发生/ D用于高液体速度。隔离栅对SCFR过渡的影响大小取决于液体和气体的表面速度,以及电流条件下隔离栅的结构。只有Liu和Hibiki的模型适用于子通道中从气泡流向上限气泡流的过渡。因此,应为其他子通道流态转换开发新的转换模型或相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号