...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Heat transfer analysis of CuO-water enclosed in a partially heated rhombus with heated square obstacle
【24h】

Heat transfer analysis of CuO-water enclosed in a partially heated rhombus with heated square obstacle

机译:带有方形加热障碍物的部分加热菱形管中的CuO水的传热分析

获取原文
获取原文并翻译 | 示例
           

摘要

Core determination of present work is to analyze the influence of nanoparticle of Copper (II) oxide within the base fluid (water) enclosed in a partially heated rhombus shaped cavity. A square cylinder is fixed at the center of rhombus and kept fix with the uniform heat. For thermal management of enclosed nano-fluid, various conditions are adjusted at the walls of rhombus in such a way that bottom side is heated and upper mean side is adiabatic, while rest of the portion is kept cold. Effective thermal conductivity and viscosity of nanofluid is used in term of static and Brownian via KKL approach. The governing partial differential equations are first converted into the dimensionless form using the variable transformation. Then numerical solution of the model is obtained using Finite Element Method (FEM). Simulation is performed for different heated portion of bottom length (I.), Rayleigh number (Ra), nanoparticle volume fraction () and three kind of heat conditions (cold, adiabatic and hot) at the surface of inner square cylinder. In order to check the rate of heat transfer within the entire cavity, various heated lengths are considered for rhombus. Performance of temperature and velocities (along x and y-directions) is computed at the mean position of the cavity. Significant influence of inner heated square cylinder is found and it is determined that cold square cylinder resist the influence of heat transfer in the entire domain of the cavity.
机译:当前工作的核心确定是分析封闭在部分加热的菱形腔中的基础流体(水)中纳米氧化铜(II)的影响。方筒固定在菱形的中心,并在均匀的热量下保持固定。为了对封闭的纳米流体进行热管理,在菱形壁上调节各种条件,以使底侧被加热而上平均侧是绝热的,而其余部分则保持冷态。纳米流体的有效导热系数和粘度通过KKL方法用于静态和布朗值。首先使用变量变换将控制的偏微分方程转换为无量纲形式。然后使用有限元方法(FEM)获得模型的数值解。对内部方形圆柱体表面的底部长度(I.),瑞利数(Ra),纳米颗粒体积分数()和三种加热条件(冷,绝热和热)的不同加热部分进行了模拟。为了检查整个腔体内的传热速率,考虑了菱形的各种加热长度。在腔的平均位置计算温度和速度(沿x和y方向)的性能。发现内部加热的方筒的显着影响,并且确定冷方筒在腔的整个区域中抵抗热传递的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号