首页> 外文期刊>International Journal of Heat and Mass Transfer >A new multiscale modeling framework for investigating thermally-induced flow maldistribution in multi-stream plate-fin heat exchangers
【24h】

A new multiscale modeling framework for investigating thermally-induced flow maldistribution in multi-stream plate-fin heat exchangers

机译:一种新的多尺度建模框架,用于研究多流板翅片热交换器中的热诱导的流动法分布

获取原文
获取原文并翻译 | 示例
           

摘要

Multi-stream Plate-fin heat exchangers (MSPFHEs) are among the most efficient heat exchangers in energy-based industries. They should be carefully designed to have maximum effectiveness and to avoid wasting energy. Flow maldistribution could significantly degrade the performance of heat exchangers. This study presents a novel modeling framework to capture the thermally-induced maldistribution in two-phase MSPFHEs. The developed model is used to show how thermally-induced flow maldistribution affects the performance of the heat exchanger, and some possible modifications are investigated to reduce its consequences. Our case study results show that thermally-induced maldistribution decreases the total heat transfer by 10.8%. Heat leakage helps to induce less flow near the leakage region, so it can be managed to overcome the initial thermally-induced flow. Moreover, thermally-induced maldistribution affects a limited region along the heat exchanger height direction. So, thermal performance deterioration decreases with increasing the number of layers for each stream. Nevertheless, increasing the heat exchanger length increases the degraded region in the heat exchanger. Thus, increasing the core length is not a good way to counteract the thermal performance deterioration caused by thermally-induced maldistribution. It is also found that an optimum layer arrangement could help to eliminate the thermally-induced maldistribution in the heat exchanger.
机译:多流板翅式热交换器(MSPFHELS)是基于能源的行业中最有效的热交换器之一。他们应该精心设计成具有最大的效果,避免浪费能量。流量恶性分布可以显着降低热交换器的性能。本研究提出了一种新颖的建模框架,用于捕获两相Mspfhes中的热诱导的恶性分布。开发的模型用于展示热诱导的流量陈列训如何影响热交换器的性能,并研究了一些可能的修改以减少其后果。我们的案例研究结果表明,热诱导的恶性分布将总热量减少10.8%。热泄漏有助于在泄漏区域附近诱导较少的流动,因此可以设法克服初始的热诱导流动。此外,热诱导的恶性分布沿着热交换器高度方向影响有限区域。因此,随着每个流的层数增加,热性能劣化减小。然而,增加热交换器长度增加了热交换器中的降解区域。因此,增加核心长度不是抵消由热诱导的恶性灌注引起的热性能劣化的好方法。还发现最佳层布置可以有助于消除热交换器中的热诱导的陈列林。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号