...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Flow features and thermal stress evaluation in turbulent mixing flows
【24h】

Flow features and thermal stress evaluation in turbulent mixing flows

机译:湍流混合流动中的流量和热应力评估

获取原文
获取原文并翻译 | 示例

摘要

The present paper depicts a numerical study of flow and thermal features in T-junctions with circular cross-section. The numerical simulation is based on the experimental validated wall-resolved Large-Eddy Simulation method. The Reynolds number in the warm main pipe flow covers a range of Re_m = 27000 to Re_m= 134000 and the temperature difference of the mixing fluids is up to △T = 249 K. The location of maximum fluctuations does not change due to a nearly identical flow pattern type in all simulations. This condition allows the investigation of the flow evolution, mixing process and heat transfer for the same thermal flow pattern type. The numerical simulations are coupled with the heat conduction in the structure due to the thermal fluid-structure-interaction. Further, this study offers a deeper insight into the hidden physics of turbulent mixing flows and the transport as well as damping of thermal fluctuations in the near-wall fluid/solid region. Our study considers also thermal stress analysis by Finite-Element Method by utilizing the wall temperature distribution of previously performed numerical simulations. Therefore, fatigue damage is evaluated based on the stress received from the Finite-Element analysis. The results show that the highest Reynolds number case corresponds to the highest flux intensity and turbulence. This affects the flow field and the thermal features in the core flow and the transport of fluctuations close to the wall. The locations with peak fluctuation intensity in the fluid generates also high fluctuating temperature areas in the structure. The finite element analysis demonstrates that the highest temperature difference case leads to the highest alternating stress intensity which has potential for thermal fatigue. The generated maximal alternating stress is coupled with the flow conditions of the mixing fluids. With an increasing Reynolds number of the main and branch pipe flow as well as temperature difference raises also the resulting maximum alternating stress intensity.
机译:本文描绘了具有圆形横截面的T型连接中的流动和热特征的数值研究。数值模拟基于实验验证的壁分辨大型仿真方法。温热的主管流中的雷诺数覆盖了一系列RE_M = 27000到RE_M = 134000,并且混合流体的温度差高达△T= 249k。由于几乎相同的位置,最大波动的位置不会改变。所有模拟中的流模式类型。这种情况允许对相同的热流动模式类型进行流动演化,混合过程和传热调查。数值模拟由于热流体结构 - 相互作用而与结构中的热传导联接。此外,本研究提供了深入了解湍流混合流动和运输的隐藏物理学以及近壁液/固体区域中的热波动的阻尼。我们的研究还考虑通过利用先前执行的数值模拟的壁温分布通过有限元方法进行热应力分析。因此,基于从有限元分析中接收的应力来评估疲劳损坏。结果表明,最高雷诺数案例对应于最高磁通强度和湍流。这影响了核心流动中的流场和热特征,以及靠近墙壁的波动的传输。流体中的峰值波动强度的位置产生结构中的高波动温度区域。有限元分析表明,最高温差壳体导致最高的交替应力强度,其具有热疲劳的可能性。产生的最大交流应力与混合流体的流动条件联接。随着主要和分支管道流量的较大雷诺数以及温度差异也引起了最大的交替应力强度。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer 》 |2021年第10期| 121605.1-121605.14| 共14页
  • 作者单位

    Institute of Nuclear Technology and Energy Systems (IKE) University of Stuttgart Stuttgart 70569 Germany;

    Cluster of Excellence SimTech University of Stuttgart Stuttgart 70569 Germany;

    Materials Testing Institute (MPA) University of Stuttgart Stuttgart 70569 Germany;

    Institute of Nuclear Technology and Energy Systems (IKE) University of Stuttgart Stuttgart 70569 Germany;

    Materials Testing Institute (MPA) University of Stuttgart Stuttgart 70569 Germany;

    Institute of Nuclear Technology and Energy Systems (IKE) University of Stuttgart Stuttgart 70569 Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Large-eddy simulation; Turbulent mixing; Heat transfer; Thermal fatigue; Stress analysis;

    机译:大涡模拟;湍流混合;传播热量;热疲劳;压力分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号