首页> 外文期刊>International Journal of Heat and Mass Transfer >Microbubble dynamics and heat transfer in boiling droplets
【24h】

Microbubble dynamics and heat transfer in boiling droplets

机译:沸腾液滴中的微泡动力学和传热

获取原文
获取原文并翻译 | 示例
       

摘要

Dissipating large heat fluxes from a surface is critically important in numerous industrial and natural applications. Boiling based spray cooling and surface texturing are two of the most promising methods being investigated to address this problem. Although our understanding on these topics has significantly improved over past decades, critical gaps remain in the knowledgebase stymieing the realization of their full potential. As an example, while bubble growth in pool boiling have been investigated in detail, comparatively little is known about how the bubbles evolve inside boiling drops. In the present work, we have investigated for the first time, the microbubble dynamics inside water droplets boiling on super-hydrophilic textured substrates using high-speed X-ray phase contrast imaging (XRPCI). Our observations show that the transient bubble density variation follows similar characteristics irrespective of the texture spacing at a given surface temperature. For an example microstructure, we found that the number of discrete bubbles on the surface decreases as temperature is increased although their growth rate increases. We observe that bubble growth is highly non-uniform during the lifetime of a drop on the surface. Initially, bubbles grow under diffusion-limited regime, but at later times they grow as -t~(1.45) due to combined effects of coalescence and evaporation. In some conditions, we found that bubbles shrink dramatically after the initial growth spurt presumably due to severe quenching of the surface, and migration of bubbles on the surface. Using the bubble sizes, for the first time we analyzed the heat flux removed by a single bubble and also by all the bubbles at a given time. We find that the highest dissipation through latent-heat component (~600 W/cm~2) occurs just in the beginning and thereafter it decreases. We expect that our findings and the analysis would guide further work on the topic and will aid in the overarching goal of engineering surfaces that are more efficient in boiling heat transfer.
机译:在众多工业和天然应用中散热来自表面的大热量均致力于重要。沸腾的喷雾冷却和表面纹理是其中两个最有希望的方法来解决这个问题。虽然我们对过去几十年来说,对这些主题的理解显着提高,但在知识库中仍然存在严重差距来实现其全部潜力。作为一个例子,虽然已经详细研究了池沸腾的泡沫增长,但是讨论了气泡在沸腾的滴落中的发展方式相对较少。在目前的工作中,我们首次调查了微泡动力学在水滴内使用高速X射线相位对比度成像(XRPCI)在超亲水纹理底板上沸腾。我们的观察结果表明,不管在给定表面温度下的纹理间距,瞬态气泡密度变化遵循类似的特性。对于示例性微观结构,我们发现,尽管它们的生长速率增加,但是随着温度的增加,表面上的离散气泡的数量降低。我们观察到,在表面上滴的寿命期间,泡沫增长非常不均匀。最初,气泡在扩散限制的状态下生长,但在后来的时间由于聚结和蒸发的组合效应而在-T〜(1.45)。在某些条件下,我们发现在初始生长突出之后,气泡缩小了可能是由于表面严重淬火,以及表面上气泡的迁移。使用气泡尺寸,首次分析单个气泡的热通量,以及在给定时间的所有气泡中。我们发现,通过潜热分量(〜600W / cm〜2)的最高耗散就在开始时发生,然后减少。我们预计我们的调查结果和分析将指导对该主题的进一步工作,并有助于工程表面的总体目标,在沸腾的传热方面更有效。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2021年第9期|121413.1-121413.10|共10页
  • 作者单位

    Mechanical & Industrial Engineering University of Illinois at Chicago. Chicago IL 60607 USA;

    Mechanical & Industrial Engineering University of Illinois at Chicago. Chicago IL 60607 USA;

    Mechanical & Industrial Engineering University of Illinois at Chicago. Chicago IL 60607 USA;

    Advanced Photon Source Argonne National Laboratory Argonne IL 60439 USA;

    Mechanical Engineering Northwestern University. Evanston IL 60208 USA;

    Mechanical & Industrial Engineering University of Illinois at Chicago. Chicago IL 60607 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Boiling; Bubble growth; Heat transfer; Textured surfaces; Spray cooling;

    机译:沸腾;泡沫增长;传播热量;纹理表面;喷雾冷却;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号