首页> 外文期刊>International Journal of Heat and Mass Transfer >Performance Assessment of Nano-enhanced Phase Change Material for Thermal Storage
【24h】

Performance Assessment of Nano-enhanced Phase Change Material for Thermal Storage

机译:纳米增强相变材料的性能评估热储存

获取原文
获取原文并翻译 | 示例
       

摘要

The use of nano phase change material in thermal energy storage applications appears promising, but the often-poor performance and the lack of understanding of the heat transfer mechanisms interconnected-ness remains a challenge and hinders their widespread integration. The existing numerical work has unveiled numerous impediments in predicting the actual melting behaviour. They rarely combine the effects of conduction enhancement, convection degradation, and latent heat reduction, due to inaccurate characterization of the thermophysical properties and the limitations of their model assumptions. In the present study, an enhanced numerical approach was developed to investigate the melting performance of xGnP-octadecane filled in a vertica 1 cylindrical enclosure at different weight concentrations. The model results for the pure phase change material were compared and validated against the experimental data. The progression of the melting front, temperature probes, energy storage capacity and heat transfer rate of the nano phase change material were thoroughly evaluated. The current numerical observations demonstrate that the addition of nanoparticles improves, up to a critical concentration of 0.5wt%, the melting rate. The results showed that by adding 0.5wt% of xGnP in the base phase change material (octadecane), the melting rate decreases by 9.7% and the heat storage rate increases by 12.6%. However, at higher loadings, the heat transfer rate is deteriorated due to worsening of other thermophysical properties provoking the prevalence of viscous forces over natural convection and latent capacity. The system overall efficacy was found to be dependent on the net effects of relative changes of all thermophysical properties with nanoparticle concentration and temperature in the solid, so called mushy, and liquid zones. Finally, when characterizing nano phase change material, the thermal conductivity cannot be considered alone as a criterion for nano phase change material selection. A high thermal conductivity is needed for maximum heat absorption in thermal transport applications. Nevertheless, low viscosity, high latent heat and specific heat capacities are also essential to ensure a better thermal energy storage efficiency in terms of capacity and heat extraction/release rate.
机译:在热能储存应用中使用纳米相变材料似乎有望,但常见的性能和对传热机制的缺乏了解互连 - NESS仍然是一个挑战和阻碍他们广泛的整合。现有的数值工作推出了预测实际熔化行为的许多障碍。它们很少结合导电增强,对流降解和潜热减少的影响,这是由于热神经性特性的不准确性和模范假设的局限性。在本研究中,开发了增强的数值方法,以研究在不同重量浓度下填充在VERTICA 1圆柱形外壳中的XGNP-octancane的熔化性能。比较纯相变材料的模型结果并验证了实验数据。彻底评价纳米相变材料的熔化前,温度探针,能量存储容量和传热速率的进展。目前的数值观察表明,添加纳米颗粒改善,直至0.5wt%的临界浓度,熔融率。结果表明,通过在基础相变材料(十八烷烃)中加入0.5wt%的XGNP,熔化速率降低了9.7%,储热速率增加12.6%。然而,在更高的载荷时,由于其他热物理性质恶化,传热速率劣化,其其他热物理性能恶化,引起自然对流和潜在能力的粘性力的普遍性。发现系统的整体疗效依赖于所有热物理性质的相对变化与纳米颗粒浓度和温度的相对变化的净效应,如固体,所谓的糊状物和液体区域。最后,当表征纳米相变材料时,不能单独认为导热率作为纳米相变材料选择的标准。在热传输应用中最大吸热需要高导热率。然而,低粘度,高潜热和特定的热量也是必不可少的,以确保能力和热提取/释放速率更好的热储能效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号