首页> 外文期刊>International Journal of Heat and Mass Transfer >Thermal performance of axial air cooling system with bionic surface structure for cylindrical lithium-ion battery module
【24h】

Thermal performance of axial air cooling system with bionic surface structure for cylindrical lithium-ion battery module

机译:圆柱形锂离子电池模块仿生表面结构轴向空气冷却系统的热性能

获取原文
获取原文并翻译 | 示例
       

摘要

In order to enhance the cooling performance of air, a new type of radiator with bionic surface structure is proposed and applied to a cylindrical lithium-ion power battery pack with axial air cooling in this paper. The computational fluid dynamics (CFD) model of the battery module is established to study the effect of the inlet velocity and structure parameter of radiator with bionic surface structure on the cooling performance. It is found that when inlet velocity is higher than 0.8 m.s~(-1), the maximum temperature and the temperature difference of the battery module can be maintained within 308 K and 5 K during the 3 C discharge rate, respectively. Then, four structure parameters (thickness, shape, height, and length) of the radiator with bionic surface structure are optimized by the single factor analysis and the orthogonal test to enhance cooling performance and reduce power consumption. The results show that the thickness of plate is the most important parameter influencing the cooling performance and power consumption. Then, the height of bionic surface structure is the secondary parameter, and the shape of bionic surface structure is the parameter with a minimal impact on the BTMS. The best cooling performance can be obtained when the four structure parameters are 0.4 mm, trapezoid, 1 mm, and 61 mm, respectively. As compared with the original radiator, the temperature difference and power consumption of the optimized battery module are reduced by 8.1 % and 15.54 %, respectively, while the maximum temperature varies a little. The optimal case in this research can be widely applied to enhance the cooling performance in air-cooled BTMS.
机译:为了提高空气的冷却性能,提出了一种具有仿生表面结构的新型散热器,并施加到本文中具有轴向空气冷却的圆柱形锂离子动力电池组。建立电池模块的计算流体动力学(CFD)模型,以研究散热器入口速度和结构参数对仿生表面结构对冷却性能的影响。结果发现,当入口速度高于0.8米〜(-1)时,在3c放电速率下,电池模块的最大温度和电池模块的温度差可以保持在308k和5 k内。然后,通过单因素分析和正交试验优化了具有仿生表面结构的散热器的四个结构参数(厚度,形状,高度和长度,以增强冷却性能并降低功耗。结果表明,板材的厚度是影响冷却性能和功耗的最重要参数。然后,仿生表面结构的高度是次要参数,仿生表面结构的形状是对BTMS产生最小影响的参数。当四个结构参数分别为0.4mm,梯形,1mm和61mm时,可以获得最佳的冷却性能。与原始散热器相比,优化电池模块的温差和功耗分别减少了8.1%和15.54%,而最高温度变化一定。该研究的最佳情况可广泛应用于增强风冷BTMS中的冷却性能。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2020年第11期|120307.1-120307.13|共13页
  • 作者单位

    State Key Laboratory of Mechanics and Control of Mechanical Structure Nanjing University of Aeronautics and Astronautics Nanjing 210016 China Key Laboratory of Helicopter Transmission Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China;

    State Key Laboratory of Mechanics and Control of Mechanical Structure Nanjing University of Aeronautics and Astronautics Nanjing 210016 China Key Laboratory of Helicopter Transmission Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China;

    State Key Laboratory of Mechanics and Control of Mechanical Structure Nanjing University of Aeronautics and Astronautics Nanjing 210016 China Key Laboratory of Helicopter Transmission Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China;

    State Key Laboratory of Mechanics and Control of Mechanical Structure Nanjing University of Aeronautics and Astronautics Nanjing 210016 China Key Laboratory of Helicopter Transmission Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Battery thermal management; Air cooling; Radiator; Bionic surface structure; Orthogonal test;

    机译:电池热管理;空气冷却;散热器;仿生表面结构;正交试验;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号