首页> 外文期刊>International Journal of Heat and Mass Transfer >Spreading and bouncing of liquid alkane droplets upon impacting on a heated surface
【24h】

Spreading and bouncing of liquid alkane droplets upon impacting on a heated surface

机译:液体烷烃液滴撞击加热表面时的扩散和弹跳

获取原文
获取原文并翻译 | 示例
           

摘要

This paper reports an experimental investigation on the impact dynamics of liquid normal alkane (n-heptane, n-decane and n-tetradecane) droplets on a stainless steel surface using high speed photography and long distance microscopic techniques. Particular interest is paid to comprehensively explore the effects of liquid viscosity and surface roughness on droplet spreading and bouncing dynamics at different thermal hydrodynamic impact regions. Specifically, firstly, high speed images identified four regimes (evaporation, nucleate boiling, transition boiling and film boiling regime) of physical phenomena that couple the droplet spreading hydrodynamics, heat transfer and phase change. Bubbles generation due to the heating of the surface with compression of air disk under the droplet was observed and this phenomenon is firstly promoted and then inhibited with the increase of the wall temperature until finally no bubbles were observed when wall temperature is beyond the Leidenfrost point (T_L). Rim disturbances during spreading were observed at relatively high Weber number with wall temperature higher than T_L. Increasing wall temperature reduces the rim disturbance. Secondly, the measured non-dimensional maximum spreading diameter β_(max) decreases with the increase of surface temperature until it becomes a constant when temperature is beyond T_L. Rough surface was found to have a lower T_L because of larger vapor pressure provided by more nucleation sites. Finally, for wall temperature beyond T_L, droplet bounces up after a certain period of residence time (τ_r). It takes more time for droplet to rebound at larger We because of larger β_(max) takes longer time to retract and rebound. Both surface roughness and liquid viscosity showed no influence on time to reach β_(max) (τ_(max)). but significantly increases τ_r by slowing the retracting process, which both should be considered in future model of τ_r.
机译:本文报告了使用高速摄影和长距离微观技术对不锈钢表面上液态正烷烃(正庚烷,N-癸烷和N-四癸烷)液滴的实验研究。特别兴趣以全面探讨液体粘度和表面粗糙度对不同热流动力冲击区的液滴扩散和蹦极力的影响。具体而言,首先,高速图像确定了物理现象的四个方案(蒸发,核解,过渡沸腾和薄膜沸腾和薄膜沸腾制度),该物理现象将液滴扩散流体动力学,传热和相变。观察到具有在液滴下的空气盘压缩的表面引起的泡沫产生,并且首先促进该现象,然后抑制壁温的增加,直到最后在壁温超出leidenfrost点时没有观察到气泡( T_L)。在相对高的韦伯号内观察到蔓延期间的轮辋扰动,壁温高于T_L。增加壁温降低了边缘障碍。其次,测量的非尺寸最大扩展直径β_(MAX)随着表面温度的增加而降低,直到当温度超出T_L时它变为恒定。由于更多成核位点提供较大的蒸气压,发现粗糙表面具有较低的T_L。最后,对于超出T_L的壁温,液滴在一定时间的停留时间(τ_r)之后反弹。由于较大的β_(max)需要更长的时间来缩回和反弹,因此需要更多的时间才能更大的液滴反弹。表面粗糙度和液体粘度都没有对β_(最大值)(τ_(max))没有影响。但是,通过减慢缩回过程显着增加τr,这两者都应该在τ_r的未来模型中考虑。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2020年第10期|120076.1-120076.11|共11页
  • 作者单位

    State Key Laboratory of Multiphase Flows in Power Engineering Xi'an Jiaotong University Xi'an 710049 China Department of Mechanical Engineering The Hong Kong Polytechnic University Hung Horn Kowloon Hong Kong;

    State Key Laboratory of Multiphase Flows in Power Engineering Xi'an Jiaotong University Xi'an 710049 China;

    State Key Laboratory of Multiphase Flows in Power Engineering Xi'an Jiaotong University Xi'an 710049 China;

    Department of Mechanical Engineering The Hong Kong Polytechnic University Hung Horn Kowloon Hong Kong;

    State Key Laboratory of Multiphase Flows in Power Engineering Xi'an Jiaotong University Xi'an 710049 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hydrocarbon droplet impact; High temperature; Rough surface; Spreading diameter; Residence time;

    机译:碳氢化合物液滴冲击;高温;粗糙的表面;扩散直径;住宿时间;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号