...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Thermal energy transport across the graphene/C_3N interface
【24h】

Thermal energy transport across the graphene/C_3N interface

机译:横跨石墨烯/ C_3N接口的热能输送

获取原文
获取原文并翻译 | 示例
           

摘要

In-plane heterojunctions, obtained by seamless joining two or more nanoribbon edges of isolated two-dimensional atomic crystals such as C_3N and graphene, are emerging nanomaterials for the development of future multifunctional devices. The thermal transport behavior at the interface of these heterojunctions plays a pivotal role in determining their thermal conductivity and functional performance. Using molecular dynamics simulations, the interfacial thermal conductance G and effective thermal conductivity k_(eff) of C_3N/graphene in-plane heterojunctions are investigated. The value of G for the C_3N/graphene hetero-junction at room temperature is 31.49 GWm~(-2)K~(-1) when heat transfers from C_3N to graphene, which is larger than the value of 28.62 GWm~(-2)K~(-1)in the reverse direction, indicating that thermal rectification exists at the interface. The k_(eff) values of the C_3N/graphene nanoribbon along the direction from C_3N to graphene and the reverse direction are 1183.60 Wm~(-2)K~(-1) and 1346.51 Wm~(-2)K~(-1) respectively. In addition, the G and k_(eff) of heterojunctions are effectively manipulated by changing the temperature, doping with nitrogen, applying strain and employing a substrate. A vibrational spectral analysis is performed to explore the thermal transport mechanism. The thermal energy transport across C_3N/graphene interfaces is enhanced by increasing the size, temperature, nitrogen doping concentration, and compressive strain perpendicular to the heat flux direction or by depositing the materials on an amorphous silicon dioxide substrate. Furthermore, increasing the temperature and compressive strain are efficient methods to increase k_(eff). The results provide valuable insights into the design and application of C_3N/graphene-based electronic devices.
机译:通过无缝连接的二维原子晶体如C_3N和石墨烯的无缝连接的纳米孔边缘获得的面内杂疾病是纳米材料的开发,用于开发未来的多功能装置。这些异质结的界面处的热传输行为在确定其导热性和功能性能方面起着枢转作用。使用分子动力学模拟,研究了C_3N /石墨烯内杂交型的界面热敏电导G和有效导热率K_(EFF)。当热量从C_3N到石墨烯转移到28.62 gwm〜(-2)时,在室温下为C_3N /石墨烯杂杂连接的G的值为31.49 gwm〜(-2)k〜(-1)。(-2 )k〜(-1)在反向方向上,表明界面存在热整流。 C_3N /石墨烯纳米孔的K_(EFF)沿着从C_3N至石墨烯的方向和相反方向的k_(EFF)值为1183.60wm〜(-2)k〜(-1)和1346.51wm〜(-2)k〜(-1 ) 分别。另外,通过改变温度,掺杂氮气,施加菌株并采用基材来有效地操纵杂交功能的G和K_(EFF)。进行振动谱分析以探索热传输机构。通过增加垂直于热通量方向的尺寸,温度,氮掺杂浓度和压缩应变或通过将材料沉积在非晶二氧化硅基板上,通过增加C_3N /石墨烯界面穿过C_3N /石墨烯接口的热能传输。此外,增加温度和压缩菌株是增加K_(EFF)的有效方法。结果为基于C_3N /石墨烯的电子设备的设计和应用提供了有价值的见解。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2020年第8期|119954.1-119954.10|共10页
  • 作者单位

    National Key Laboratory of Science and Technology on Advanced Composites in Special Environments Harbin Institute of Technology Harbin 150080 PR China;

    National Key Laboratory of Science and Technology on Advanced Composites in Special Environments Harbin Institute of Technology Harbin 150080 PR China;

    National Key Laboratory of Science and Technology on Advanced Composites in Special Environments Harbin Institute of Technology Harbin 150080 PR China Shenzhen STRONG Advanced Materials Research Institute Co. Ltd Shenzhen PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号