...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Molecular dynamic simulation to study the effects of roughness elements with cone geometry on the boiling flow inside a microchannel
【24h】

Molecular dynamic simulation to study the effects of roughness elements with cone geometry on the boiling flow inside a microchannel

机译:分子动态模拟研究粗糙度元素与锥形几何效果在微通道内的沸腾流动中的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Present work studies effects of presence of surface roughness elements with cone geometry on the boiling flow behavior of Argon fluid inside microchannels which are affected by different boundary wall temperatures using molecular dynamic simulation method. Firstly, microchannel is simulated with smooth surfaces under boundary wall temperatures of 84 K, 96 K, 108 K, 114 K and 133 K to prepare boiling condition for Argon atoms. Microchannel surfaces are roughened by cone shape of roughness elements and mentioned temperatures are applied on the roughened microchannel walls to be comparable with smooth one. Also, an external driving force of 0.002 eV/A is applied on the Argon atoms at the entrance of both rough and smooth microchannels for all cases of wall temperatures. Statistical approach is employed to compare results of both microchannels. It is reported that adding roughness elements on the smooth surfaces of microchannel can extend contact surfaces of energy transfer which empowers boiling process of fluid flow. Presence of cone geometry of roughness elements causes fluid flow velocity reduction as much as 0.5-1.5%. Also, it is observed that roughness elements results in enhancement of temperature profiles of fluid. Moreover, it is found that role of roughness element in low time steps is stronger than high time step. Therefore, evolution of boiling process can reduce consequences of roughness on the flow behavior. Finally, due to ignorable consequences of roughness element on the boiling flow behavior, it is concluded that preparing very smooth surfaces is not economical for practical application such as medical micro probes to destroy abnormal or diseased tissues. (C) 2019 Elsevier Ltd. All rights reserved.
机译:目前的工作研究表面粗糙度与锥形几何形状的存在对微通道内氩流体的沸腾流动性的影响,这些微通道受到不同边界壁温度的使用分子动态模拟方法。首先,在84k,96k,108k,114k和133k的边界壁温度下模拟微通道,在边界壁温度下,为氩原子制备沸腾条件。微通道表面通过粗糙度元素的锥形形状粗糙化,并在粗糙的微通道壁上施加上述温度,以与光滑的墙体相当。而且,在粗糙和光滑的微通道入口处的所有壁温度的入口处施加0.002eV / A的外部驱动力。使用统计方法来比较两种微通道的结果。据报道,在微通道的光滑表面上添加粗糙度元素可以延长能量转移的接触表面,这使得流体流动的沸腾过程。粗糙度元件的锥形几何形状的存在使流体流速降低多达0.5-1.5%。而且,观察到粗糙度元件导致增强流体的温度谱。此外,发现粗糙度元素在低时间步骤中的作用比高时间步长强。因此,沸腾过程的演变可以减少粗糙度对流动行为的后果。最后,由于粗糙度元素对沸腾流动行为的忽略后果,得出结论,制备非常光滑的表面对于实际应用,例如医学微探针以破坏异常或患病组织的实际应用不经济。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号