首页> 外文期刊>International Journal of Heat and Mass Transfer >Non-linear Non-Iterative transient inverse conjugate heat transfer method applied to microelectronics
【24h】

Non-linear Non-Iterative transient inverse conjugate heat transfer method applied to microelectronics

机译:非线性非迭代瞬态逆共轭换热方法在微电子学中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

Solving for temperature profiles given boundary conditions, geometry, and material properties is relatively straightforward given the wealth of analytical and computational techniques available. However, experimentally we often measure temperatures and seek to understand unknown boundary conditions or material properties. This problem is generally ill-posed. Thus, to get the value of these input parameters, we use inverse methods: knowing the output of the system (i.e., temperature), we can compute the value of the unknown parameters (e.g., thermal conductivity or heat fluxes). In microelectronics, the location and magnitude of the boundary conditions including local heat generation rates are often unknown or difficult to model due to the compactness of the current microchips and active thermal management schemes that distribute computations between different cores causing time-varying heat generation within the chips. This information can be retrieved using inverse heat transfer methodologies by tracking the temperature distributions in space and time. In this work, we develop a new, non-iterative inverse methodology to retrieve the heat flux inside of 3D geometries of stacked microchips. This method not only provides good agreement between the imposed and the retrieved heat flux with a linear form of the heat diffusion equation, but also predicts the imposed heat flux with good accuracy in situations with non-linearities. Here we numerically and experimentally validate our new approach using a microchip with 25 heaters that can be operated independently to create different spatial and temporal heat flux patterns. During testing, the system is in a controlled environmental chamber and the temporal and spatially varying temperature of the top surface of the chip is measured using infrared thermography for input to the inverse method. The system and model include non-linearities through varying convective heat transfer boundary conditions on different parts of a test article and temperature-dependent thermal properties of the constituent materials. The inverse methodology retrieves the local heat generation rates with good agreement in time, space, and magnitude. An uncertainty analysis of the computation and the experiments is also detailed. Our methodology is unique compared to past work because non-linearity is solved without the need of using iterative processes, which makes the algorithm computationally efficient. Ultimately, this method is useful for the determination of the location and magnitude of the heat flux in any 3D system based on external temperature measurements with real heat transfer properties without the need of an iterative procedure.
机译:考虑到可用的大量分析和计算技术,在给定边界条件,几何形状和材料属性的情况下求解温度曲线相对简单。但是,从实验上讲,我们经常测量温度并试图了解未知的边界条件或材料特性。这个问题通常是不适当的。因此,为了获得这些输入参数的值,我们使用逆方法:知道系统的输出(即温度),我们可以计算未知参数的值(例如,热导率或热通量)。在微电子学中,由于当前微芯片的紧凑性和主动热管理方案(在不同核之间分配计算,导致内部热量随时间变化的热量产生),边界条件(包括局部生热速率)的位置和大小通常未知或难以建模。筹码。可以使用逆传热方法通过跟踪时空中的温度分布来检索此信息。在这项工作中,我们开发了一种新的非迭代逆方法,以检索堆叠微芯片3D几何形状内部的热通量。该方法不仅以热扩散方程的线性形式提供了施加的热通量和取回的热通量之间的良好一致性,而且在非线性情况下还可以很好地预测施加的热通量。在这里,我们使用带有25个加热器的微芯片在数字上和实验上验证了我们的新方法,该加热器可以独立运行以创建不同的时空热通量模式。在测试过程中,系统处于受控的环境室内,并且使用红外热成像法测量芯片顶表面的时间和空间变化温度,并将其输入反向方法。该系统和模型包括通过改变测试物品不同部分上的对流传热边界条件以及构成材料的温度相关热特性的非线性。逆向方法可以在时间,空间和幅度上以良好的一致性检索局部生热率。还详细介绍了计算和实验的不确定性分析。与过去的工作相比,我们的方法是独特的,因为无需使用迭代过程即可解决非线性问题,从而使算法的计算效率更高。最终,此方法可用于基于具有真实传热特性的外部温度测量来确定任何3D系统中热通量的位置和大小,而无需进行迭代。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号