...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Heat transfer enhancement of turbulent channel flow using a piezoelectric fan
【24h】

Heat transfer enhancement of turbulent channel flow using a piezoelectric fan

机译:使用压电风扇增强湍流通道的传热

获取原文
获取原文并翻译 | 示例

摘要

This study experimentally investigated the flapping dynamics of a piezoelectric (PE) fan in channel flow and the resultant wall heat-removal performance enhancement. The PE fan consisted of a rigid PZT (Lead zirconate titanate) actuator and a flexible PET (Polyethylene terephthalate) blade. The PE fan in absence of electric excitation or air flow was chosen as the baseline data configuration. The mid-span of the PE fan was illuminated by a laser sheet, and the instantaneous profiles of the PE fan were captured by a highspeed camera system; the structure boundary detection algorithm and fast Fourier transform algorithm were used to identify the flapping amplitude and frequency. The time-averaged heat transfer performance across the channel wall with constant heat flux boundary condition was spatially resolved by the temperature sensitive paint measurement. The piezoelectric fan displayed the largest flapping amplitude at the fundamental resonant frequency of 43 Hz. The amplified flapping amplitude and the increased frequency were achieved with the elevation of the Reynolds number, and correspondingly the resultant heat transfer performances were improved. At a low Reynolds number of 1.37 × 10~4, the piezoelectric fan blade flapped synchronously with the PZT actuator, while the flapping amplitude was considerably intensified to 0.72 times the blade length under excitation voltage of fundamental resonant frequency, resulting in a 30% augmentation in the local Nusselt number. At a high Reynolds number of 1.91 × 104, the flapping frequency was locked to its flutter frequency 64.5 Hz, regardless of the excitation voltage frequency. The flapping amplitude and the resultant heat transfer performance were found to be insensitive to the excitation voltage frequency at a Reynolds number of 1.91 × 10~4, although the maximum local heat transfer was enhanced by 46% at an excitation voltage frequency 43 Hz.
机译:这项研究实验研究了压电(PE)风扇在通道流中的拍动动力学,并提高了墙体的散热性能。 PE风扇由一个刚性PZT(铅酸锆钛酸铅)致动器和一个柔性PET(聚对苯二甲酸乙二酯)叶片组成。选择没有电激励或没有气流的PE风扇作为基准数据配置。 PE风扇的中跨由激光片照亮,PE风扇的瞬时轮廓由高速摄像系统捕获;利用结构边界检测算法和快速傅里叶变换算法识别震荡幅度和频率。通过热敏涂料测量在空间上解决了在恒定热通量边界条件下跨通道壁的时间平均传热性能。压电风扇在43 Hz的基本共振频率下显示出最大的拍动幅度。随着雷诺数的增加,实现了增大的拍打幅度和增加的频率,并相应地提高了所得的传热性能。在1.37×10〜4的低雷诺数下,压电风扇叶片与PZT致动器同步拍打,而在基本共振频率的激励电压下,拍打幅度被大幅增强至叶片长度的0.72倍,从而增加了30%在当地的Nusselt号码中。在1.91×104的高雷诺数下,无论激励电压频率如何,振荡频率都被锁定在其振荡频率64.5 Hz。发现在雷诺数为1.91×10〜4时,振荡幅度和所得的传热性能对激发电压频率不敏感,尽管在激发电压频率为43 Hz时最大局部传热增加了46%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号