...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Microporosity formation and dendrite growth during solidification of aluminum alloys: Modeling and experiment
【24h】

Microporosity formation and dendrite growth during solidification of aluminum alloys: Modeling and experiment

机译:铝合金凝固过程中的微孔形成和枝晶生长:建模和实验

获取原文
获取原文并翻译 | 示例
           

摘要

A coupled lattice Boltzmann-cellular automaton-finite difference (LB-CA-FD) model is proposed for the simulations of hydrogen porosity formation during dendritic solidification of binary hypoeutectic aluminum alloys. The present model involves the effect of hydrogen and solute partitioning at the solid/liquid interface, and the transport of hydrogen and solute concentrations as gas bubbles and dendrites grow in two and three dimensions. The dendrite growth and solute transport are simulated using a CA-FDM approach. The nucleation, growth, and movement of gas bubbles, as well as the transport of hydrogen, are calculated using the multi-phase LB model. After model validation by the tests of Laplace's law and contact angle simulations on smooth and rough solid surfaces, the proposed model is applied to simulate the temporal evolution of hydrogen porosities and their interaction with dendrites during solidification of an Al-4 wt% Cu alloy. The simulated morphologies of gas pores and dendrites compare reasonably well with the experimental micrograph reported in the literature. The simulation results show that the gas bubbles nucleate at the roots of secondary dendrite arms preferentially. The competitive growth between the bubbles is visualized and found to be coherently controlled by bubble size, hydrogen supersaturation, and local hydrogen concentration in liquid. The simulations of microporosity formation together with columnar dendrite growth during directional solidification of an Al-4 wt% Cu alloy are carried out in two and three dimensions. It is found that the bubbles could move in the interdendritic liquid channel in the two-dimensional case. In the three-dimensional simulation, however, the bubbles are probably pinned by the secondary arms and thereby remain stationary. The three-dimensional simulation results are identical with the in situ experimental observation. (C) 2019 Elsevier Ltd. All rights reserved.
机译:为了模拟二元次共晶铝合金的树枝状凝固过程中氢孔隙形成,提出了一种耦合的格子玻尔兹曼细胞自动机有限差分(LB-CA-FD)模型。本模型涉及氢和溶质在固/液界面处分配的影响,以及随着气泡和树枝状晶体在二维和三维中的生长,氢和溶质浓度的传输。使用CA-FDM方法模拟枝晶生长和溶质迁移。使用多相LB模型计算气泡的成核,生长和运动以及氢的传输。通过在光滑和粗糙的固体表面上进行拉普拉斯定律和接触角模拟的测试对模型进行验证后,将所提出的模型应用于模拟Al-4 wt%Cu合金凝固过程中氢孔隙的时间演化及其与枝晶的相互作用。气孔和树枝状晶体的模拟形态与文献报道的实验显微照片相当吻合。仿真结果表明,气泡优先在次生枝晶臂的根部成核。气泡之间的竞争性增长是可视化的,并且发现其受气泡大小,氢过饱和度和液体中局部氢浓度的一致控制。在二维和三维中进行了Al-4wt%Cu合金定向凝固过程中微孔形成以及柱状枝晶生长的模拟。发现在二维情况下,气泡可以在树突间液体通道中移动。但是,在三维模拟中,气泡可能会被辅助臂固定,从而保持静止。三维模拟结果与原位实验观察结果相同。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2020年第1期|118838.1-118838.12|共12页
  • 作者单位

    Soochow Univ Shagang Sch Iron & Steel Suzhou 215137 Peoples R China|Southeast Univ Sch Mat Sci & Engn Jiangsu Key Lab Adv Metall Mat Nanjing 211189 Jiangsu Peoples R China;

    Southeast Univ Sch Mech Engn Jiangsu Key Lab Design & Manufacture Micronano Bi Nanjing 211189 Jiangsu Peoples R China;

    Nanjing Univ Sci & Technol Sch Mat Sci & Engn Nanjing 210094 Jiangsu Peoples R China;

    Southeast Univ Sch Mat Sci & Engn Jiangsu Key Lab Adv Metall Mat Nanjing 211189 Jiangsu Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Gas porosity; Dendrite; Modeling; Lattice Boltzmann model; Cellular automaton;

    机译:气孔;树突;造型;格子Boltzmann模型;元胞自动机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号