首页> 外文期刊>International Journal of Heat and Mass Transfer >Heat transfer enhancement of air-cooled heat sink channel using a piezoelectric synthetic jet array
【24h】

Heat transfer enhancement of air-cooled heat sink channel using a piezoelectric synthetic jet array

机译:使用压电合成射流阵列增强风冷散热器通道的传热

获取原文
获取原文并翻译 | 示例
           

摘要

In the last decade, active devices, such as synthetic jets have been intensively studied for electronics cooling. The present study experimentally and computationally investigates heat transfer performance of synthetic jet arrays used in heat sink channels. The heat sink of the present study consists of multiple flow channels that are parallel to one another. The channel walls behave like fins in that their tops are exposed to the flow. The jets are designed to impinge on the tops and sides of those fins to augment heat transfer. The current study employs a single channel of the heat sink to investigate heat transfer augmentation performance by the jets. The oscillating diaphragms that create the jets are driven by a piezo-bow operating at its second resonant vibrational mode to generate a large oscillatory displacement at a high working frequency. The frequency for this study is 1240 Hz and the measured displacement of the jet driving diaphragm is 0.5 mm. The corresponding peak velocity of each jet is around 45 m/s and the total power consumption is 1.6 W when operating with 20 jets. Heat transfer experiments using jet arrays of different jet orifice configurations are conducted in a single narrow channel that represents one of the channels of a multi-channel heat sink. With a through-flow velocity of 14.7 m/s driven by a centrifugal fan, the synthetic jet arrays with square orifices achieve 9.3% enhancement on heat transfer coefficient averaged over the entire fin (channel wall) surface, compared to the value for a case with through flow only. When the channel through-flow velocity decreases to 8 m/s spatially-averaged heat transfer enhancement by the jets is 21.7%; again, averaged over the entire fin (channel wall) surface. In a computational study, the jet diaphragm movement is realized with a dynamic mesh available within the commercial software package ANSYS Fluent. Computed surface-average Nusselt numbers show good agreement with the experimental data, differing by no more than 10%. The numerical study was performed to quantify the effects of system parameters, such as the jet and channel flow rates and orifice-to-fin-surface distance, on heat transfer performance over different sections of the channel (fin) wall. According to the results of the numerical study, the synthetic jets have a strong cooling effect on the channel wall tip region, the nearest surface to the jet orifice, and a weaker effect on the channel side surfaces. It is found that the synthetic jet can enhance locally-averaged heat transfer coefficients at the fin tip by up to 413%, compared to a case with cooling by channel through-flow only. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在过去的十年中,对有源装置(例如合成射流)进​​行了深入的研究,以进行电子冷却。本研究通过实验和计算方法研究了用于散热器通道的合成射流阵列的传热性能。本研究的散热器由多个彼此平行的流动通道组成。通道壁的行为像鳍一样,因为它们的顶部暴露在水流中。射流的设计旨在撞击这些鳍片的顶部和侧面,以增强热传递。当前的研究使用散热器的单个通道来研究喷嘴的传热增强性能。产生射流的振动膜片由在其第二共振振动模式下运行的压电弓驱动,从而在高工作频率下产生较大的振动位移。这项研究的频率为1240 Hz,测得的射流驱动隔膜的位移为0.5 mm。每个喷嘴的相应峰值速度约为45 m / s,使用20个喷嘴时,总功耗为1.6W。使用不同喷嘴孔构造的喷嘴阵列的传热实验是在一个狭窄的通道中进行的,该通道代表多通道散热器的通道之一。通过离心风扇驱动的通流速度为14.7 m / s,与情况相比,具有方形孔的合成射流阵列在整个鳍片(通道壁)表面平均传热系数提高了9.3%。仅具有通流。当通道的流速降低到8 m / s时,射流的空间平均传热增强为21.7%;再次,将整个鳍片(通道壁)表面平均。在计算研究中,利用商业软件包ANSYS Fluent中可用的动态网格来实现喷射隔膜的运动。计算得出的表面平均努塞尔数与实验数据具有很好的一致性,相差不超过10%。进行了数值研究,以量化系统参数(如射流和通道的流速以及孔口至翅片表面的距离)对通道(翅片)壁不同部分的传热性能的影响。根据数值研究的结果,合成射流对通道壁尖端区域,离射流孔最近的表面具有较强的冷却作用,而对通道侧表面的影响较小。已发现,与仅通过通道流进行冷却的情况相比,合成射流可将翅片尖端的局部平均传热系数提高多达413%。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号