首页> 外文期刊>International Journal of Heat and Mass Transfer >Comparison between impingement/effusion and double swirl/effusion cooling performance under different effusion hole diameters
【24h】

Comparison between impingement/effusion and double swirl/effusion cooling performance under different effusion hole diameters

机译:不同出水孔直径下冲击/出水与双涡流/出水冷却性能的比较

获取原文
获取原文并翻译 | 示例
           

摘要

This paper numerically investigates the effects of the film cooling hole diameter on the flow and heat transfer characteristics of the impingement/effusion cooling and double swirl/effusion cooling. Impingement jet arrays at three jet Reynolds numbers, 10,000, 15,000, 20,000, are employed. The target channel consists of a semicircular channel in impingement/effusion cooling and two partially overlapping cylinders in double swirl/effusion cooling. Three arrays of film cooling hole rows are established on the target surface under two arrangements. Four film cooling hole diameters, 0.4, 0.6, 0.8 and 1.0 times the jet hole diameter, are considered. The flow structure and flow development inside the target channel are compared and analysed. The heat transfer performance are discussed and compared. Results show that the effusion air distribution and Nusselt number distribution is more uniform in double swirl/effusion cooling. With the application of the double swirl channel, about 20-33% increase in overall averaged Nusselt number of the whole target channel and about 12-20% increase in spatially averaged Nusselt number at the effective cooling region are obtained. With the application of the film cooling holes, the maximum increase in spatially averaged Nusselt number at the effective cooling region is 10.3% in impingement/effusion cooling and 4.7% in double swirl/effusion cooling. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本文数值研究了膜冷却孔直径对撞击/渗出冷却和双涡旋/渗出冷却的流动和传热特性的影响。使用三个雷诺数10,000、15,000、20,000的冲击射流阵列。目标通道由在冲击/喷射冷却中的半圆形通道和在双涡旋/喷射冷却中的两个部分重叠的圆柱体组成。以两种布置在目标表面上建立三排胶片冷却孔行。考虑了四个薄膜冷却孔直径,分别是喷射孔直径的0.4、0.6、0.8和1.0倍。比较和分析目标通道内的流动结构和流动发展。对传热性能进行了讨论和比较。结果表明,在双旋流/积液冷却中,积液空气分布和Nusselt数分布更为均匀。通过使用双涡旋通道,在整个有效冷却区域,整个目标通道的总平均努塞尔数增加了约20-33%,空间平均努塞尔数增加了约12-20%。随着薄膜冷却孔的应用,在冲击/喷射冷却中,有效冷却区域的空间平均努塞尔数的最大增加为10.3%,在双涡旋/喷射冷却中为4.7%。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2019年第10期|1097-1113|共17页
  • 作者单位

    Xi An Jiao Tong Univ, Inst Turbomachinery, Shaanxi Engn Lab Turbomachinery & Power Equipment, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, Inst Turbomachinery, Shaanxi Engn Lab Turbomachinery & Power Equipment, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, Inst Turbomachinery, Shaanxi Engn Lab Turbomachinery & Power Equipment, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, Inst Turbomachinery, Shaanxi Engn Lab Turbomachinery & Power Equipment, Xian 710049, Shaanxi, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Internal cooling; Jet impingement; Swirling flow; Double swirl cooling; Numerical simulation;

    机译:内部冷却;喷射冲击;旋转流动;双旋转冷却;数值模拟;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号