...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Micro-particle image velocimetry visualization study of thermal Buoyant-Marangoni flow in microtubes
【24h】

Micro-particle image velocimetry visualization study of thermal Buoyant-Marangoni flow in microtubes

机译:微管中浮力-Marangoni热流的微粒图像测速可视化研究

获取原文
获取原文并翻译 | 示例
           

摘要

The coupled momenta induced by thermal effects during evaporation near liquid-vapor interfaces cause complex three-dimensional flow structures, called thermal buoyant-capillary flows. In this study, we investigated the coupled flow mechanisms, observing the internal flow structure of evaporating micro-mini scale menisci in microtubes (680-1560 mu m) by the micro-particle image velocimetry (PIV) technique. The horizontal and vertical motions of 1-mu m fluorescent particles in volatile ethanol was visualized to obtain the shape of the flow in high-resolution (10-20 mu m resolution). The evaporation rate (2-1800 ng/s) and environmental temperature (20-50 degrees C) were controlled using the Joule heating method. We discuss the effects of varying the thermal conditions and tube size on the position and strength of the vortices. In addition to the experimental work, a simplified numerical simulation was also carried out to estimate the thermal properties that were not measured during experiment. As a result, it was explained that the vortices near the wall of the upper tube are initialized by weak thermal effects from the wall, and higher heating condition cause them to move down the tube and enhance their vorticity by dominant buoyancy effect. In addition, vortices in tubes with large diameters are weaker and their motion is delayed due to the increase in gravitational effects. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在液-气界面附近蒸发过程中,由热效应引起的耦合动量会导致复杂的三维流动结构,称为热浮力-毛细管流动。在这项研究中,我们研究了耦合的流动机制,通过微粒图像测速技术(PIV)观察了微管(680-1560μm)中蒸发的微型刻度弯液面的内部流动结构。可视化1微米荧光颗粒在挥发性乙醇中的水平和垂直运动,以高分辨率(10-20微米分辨率)获得流动的形状。使用焦耳加热法控制蒸发速率(2-1800 ng / s)和环境温度(20-50摄氏度)。我们讨论了改变热条件和管子尺寸对涡旋的位置和强度的影响。除实验工作外,还进行了简化的数值模拟以估算在实验过程中未测量到的热性能。结果,解释了上管壁附近的涡流是由壁的弱热效应引起的,较高的加热条件使它们向下移动并通过显性浮力作用增强了涡旋。另外,由于重力作用的增加,大直径管中的涡旋较弱,并且其运动被延迟。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
  • 作者单位

    Chinese Acad Sci, Inst Engn Thermophys, Ctr Heat & Mass Transfer, Beijing 100190, Peoples R China;

    Chinese Acad Sci, Inst Engn Thermophys, Ctr Heat & Mass Transfer, Beijing 100190, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China;

    Chinese Acad Sci, Inst Engn Thermophys, Ctr Heat & Mass Transfer, Beijing 100190, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China;

    Chinese Acad Sci, Inst Engn Thermophys, Ctr Heat & Mass Transfer, Beijing 100190, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China;

    Chinese Acad Sci, Inst Engn Thermophys, Ctr Heat & Mass Transfer, Beijing 100190, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Marangoni flow; Buoyant convection; Micro-PIV; Vorticity;

    机译:马朗哥尼流浮力对流Micro-PIV涡度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号