首页> 外文期刊>International Journal of Heat and Mass Transfer >Numerical simulation for solar energy aspects on unsteady convective flow of MHD Cross nanofluid: A revised approach
【24h】

Numerical simulation for solar energy aspects on unsteady convective flow of MHD Cross nanofluid: A revised approach

机译:MHD交叉纳米流体非稳态对流流动的太阳能方面数值模拟:一种修正方法

获取原文
获取原文并翻译 | 示例
           

摘要

A numerical analysis for unsteady magnetohydrodynamic (MHD) flow of Cross nanofluid subject to non-linear thermal radiation is carried out. The Buongiorno's nanofluid model involving Brownian motion and thermophoresis is adopted. Two more realistic conditions namely convective condition and zero nanoparticles mass flux condition are implemented on the boundary. Mathematical problem is modelled with the aid of momentum, temperature as well as nanoparticles concentration equations adopting suitable transforming variables. The resulting highly nonlinear differential systems are solved numerically with the help of shooting Runge-Kutta-Fehlberg method. Numerical computations for Nusselt number as well as skin friction coefficient are performed. Variations of velocity, temperature as well as nanoparticles concentration profiles are examined by varying the involved parameters. A comparative analysis is conducted between existing study and present investigation in limiting case and found to be in excellent agreement. It is interesting to note that thermal as well as nanoparticles concentration boundary layer thicknesses are the upgrading functions of unsteadiness parameter. Additionally, rate of heat transfer is depreciated by upgrading the values of radiation parameter as well as thermophoresis parameter. Furthermore, the magnitude of wall shear stress is an enhancing function of the magnetic parameter. It is also noted that rate of heat transfer enhance with the enhancement of temperature ratio parameter as well as Biot number. (C) 2018 Elsevier Ltd. All rights reserved.
机译:对非线性热辐射交叉纳米流体的非稳态磁流体动力学(MHD)流动进行了数值分析。采用Buongiorno的涉及布朗运动和热泳的纳米流体模型。在边界上实现了两个更现实的条件,即对流条件和零纳米粒子质量通量条件。借助动量,温度以及采用适当变换变量的纳米粒子浓度方程对数学问题进行建模。借助Runge-Kutta-Fehlberg方法,可以对所得的高度非线性微分系统进行数值求解。进行了努塞尔数以及皮肤摩擦系数的数值计算。通过改变所涉及的参数来检查速度,温度以及纳米颗粒浓度分布的变化。现有的研究与当前的调查在有限的案例之间进行了比较分析,发现非常吻合。有趣的是,热以及纳米颗粒浓度边界层厚度是不稳定参数的提升函数。另外,通过提高辐射参数和热泳参数的值来降低传热速率。此外,壁切应力的大小是磁参数的增强函数。还应注意的是,传热速率随温度比参数以及比奥特数的增加而提高。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号