首页> 外文期刊>International Journal of Heat and Mass Transfer >Effects of magnetohydrodynamic mixed convection on fluid flow and structural stresses in the DCLL blanket
【24h】

Effects of magnetohydrodynamic mixed convection on fluid flow and structural stresses in the DCLL blanket

机译:磁流体动力混合对流对DCLL覆盖层中流体流动和结构应力的影响

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, numerical simulations are conducted to investigate magnetohydrodynamic (MHD) mixed convection for buoyancy-assisted flows under strong magnetic field and large volumetric heat sources in the Dual-Coolant Lead-Lithium (DCLL) blanket. A magnetic-convection code based on the finite volume method is developed and validated using benchmark solutions. A consistent and conservative scheme is applied to deal with the electric current conservation issues. The PISO algorithm on unstructured collocated meshes is employed to solve the N-S equations considering the Lorentz force effect. Deformations and stresses of flow channel insert (FCI) are analyzed using the finite element method (FEM). Cases with high Hartmann number of 9600-19,200, high Reynold number of 31,000 and high Grashof number of 3.5 x 10(11 )are used in the numerical simulations. The buoyancy effects as well as electric conductivity of the FCI on poloidal flows in rectangular channel with a SiC FCI are analyzed, considering nonuniform exponential volumetric heat source and toroidal magnetic field. The deformation field and stress field of the FCI are calculated under MHD mixed convection effects. Results demonstrate that a reverse flow occurs near the cold wall in the bulk region, which is a special phenomenon resulted from buoyancy. Compared to MHD forced convection, buoyancy delivers enhanced temperature uniformity, a drastically changed velocity distribution, and a slightly elevated pressure drop. At the same time, the pressure drop between inlet and outlet has a linear relation with e(B)(/5). Mixed convection temperatures is insensitive to FCI electrical conductivity, and only velocity near the cold wall appears sensitive. In the FCI, both magnetic field and electrical conductivity positively correlate with thermal stresses. Simulations also suggest the buoyancy effect reduces temperature difference across FCI and thermal stress. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在这项研究中,进行了数值模拟,以研究在双磁场铅锂(DCLL)毯中强磁场和大体积热源作用下的浮力辅助流动的磁流体动力学(MHD)混合对流。使用基准解决方案开发并验证了基于有限体积方法的磁对流代码。采用一致且保守的方案来处理电流守恒问题。考虑到洛仑兹力效应,采用非结构化并置网格上的PISO算法求解N-S方程。使用有限元方法(FEM)分析流道嵌件(FCI)的变形和应力。在数值模拟中使用了具有高Hartmann数9600-19,200,高雷诺数31,000和高Grashof数3.5 x 10(11)的情况。考虑了非均匀指数体积热源和环形磁场,分析了SiC在矩形通道中FCI对矩形流中浮力的浮力效应和电导率。在MHD混合对流作用下,计算了FCI的变形场和应力场。结果表明,在主体区域的冷壁附近发生了逆流,这是浮力导致的一种特殊现象。与MHD强制对流相比,浮力可增强温度均匀性,大幅改变速度分布并略微提高压降。同时,入口和出口之间的压降与e(B)(/ 5)呈线性关系。混合对流温度对FCI的电导率不敏感,只有冷壁附近的速度才敏感。在FCI中,磁场和电导率都与热应力成正相关。仿真还表明,浮力效应可减小FCI两端的温差和热应力。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号