...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Effect of microstructure on melting in metal-foam/paraffin composite phase change materials
【24h】

Effect of microstructure on melting in metal-foam/paraffin composite phase change materials

机译:微观结构对金属泡沫/石蜡复合相变材料熔化的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The performance of phase change materials (PCM) as energy storage units are often limited by their low thermal conductivities that constrain the rates of melting or solidification. Highly porous metal foam composite PCMs are increasingly being used to abate this limitation and enable greater control over the thermal and phase change characteristics of the system. In the present study, a pore-scale computational analysis is carried out to characterize the performance of an n-eicosane-aluminium-foam composite PCM with a porosity of 0.94, over varying microstructural properties including strut, pore and cell sizes, and specific surface area. The simulations are carried out using OpenFOAM by employing the enthalpy-porosity formulation for modeling phase change during melting. The foam geometries are generated computationally using tools developed by the authors, published recently (Abishek et al., 2017, Ref. [1]). The statistics of the pore-scale structures of the virtual foam geometries and the numerical methodology employed for the modeling were validated against theoretical and empirical data from the literature. The simulations reveal that the presence of metal foam significantly enhances the melting rate as compared to pure PCM. It is also found that the melting rates are strongly correlated to the specific surface of the foam – highlighting a vital parameter that can be used to optimize the performance of the composite PCM for a given application. An empirical relationship correlating the dimensionless melt fraction with the Fourier number, Stefan number and dimensionless specific surface area is also presented for the range of parameters considered in this study.
机译:相变材料(PCM)作为能量存储单元的性能通常受到其低热导率的限制,该低热导率限制了熔化或固化的速度。越来越多地使用高度多孔的金属泡沫复合材料PCM来减轻这种限制,并能够更好地控制系统的热和相变特性。在本研究中,进行了孔尺度计算分析,以表征孔隙率为0.94的正二十烷铝铝泡沫复合材料PCM在不同的微观结构特性(包括支撑杆,孔和孔尺寸以及比表面)上的性能。区域。通过使用焓-孔隙度公式模拟熔融过程中的相变,可使用OpenFOAM进行模拟。泡沫的几何形状是使用作者开发的工具以计算方式生成的,该工具最近发表(Abishek等人,2017,参考文献[1])。相对于来自文献的理论和经验数据,对虚拟泡沫几何结构的孔尺度结构的统计数据和用于建模的数值方法进行了验证。模拟显示,与纯PCM相比,金属泡沫的存在显着提高了熔化速率。还发现,熔化速率与泡沫的比表面密切相关-突出显示了一个重要参数,可用于优化给定应用的复合PCM性能。对于本研究中考虑的参数范围,还提出了将无因次熔体分数与傅立叶数,斯特凡数和无因次比表面积相关的经验关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号