首页> 外文期刊>International Journal of Heat and Fluid Flow >Lower drag and higher lift for turbulent airfoil flow by moving surfaces
【24h】

Lower drag and higher lift for turbulent airfoil flow by moving surfaces

机译:通过移动表面使湍流翼型流降低和更高提升

获取原文
获取原文并翻译 | 示例
           

摘要

Large-eddy simulations of the flow over an actuated NACA4412 airfoil at a chord-based Reynolds number Re-c = 400, 000 are conducted. These solutions extend the previous analysis of an actuated DRA2303 airfoil flow since both flow configurations possess completely different pressure distributions. The technique of spanwise traveling transversal surface waves is used to improve the aerodynamic efficiency, i.e., to decrease the drag and increase the lift. About 65% of the NACA4412 surface on the upper and lower side of the wing section are fully actuated. Two parameter combinations are tested, the first setup leads to an overall drag reduction of Delta c(d) =-8.3% and an increase of the lift by Delta c(l) = 2.4% and the second combination yields a mild net power saving of Delta P-net =-1.4%. Strong reductions of the wall-shear stress up to Delta c(f) =-31% are achieved in the regions where the actuation parameters are optimum and the boundary layer growth is damped such that a reduced boundary layer thickness is observed at the trailing edge. Detailed boundary layer statistics are discussed for two positions on the suction and pressure side for both cases. The velocity fluctuations are strongly reduced across the boundary layer and a reduction of the streamwise fluctuations in the near-wall region is also observed in the problem specific inner scaling. Especially for the streamwise velocity a shift of energy away from the wall and from the smaller scales is obtained. The changes of the boundary layers persist beyond the actuated region, i.e., reduced turbulent kinetic energy is determined in the wake downstream of the trailing edge. The comparison of the actuated NACA4412 flow with data from an actuated DRA2303 flow shows similar modifications of the flow field, i.e., positive drag reduction is achieved for both airfoils. This clearly indicates the robustness of the transversal-traveling-wave drag reduction technique.
机译:进行在基于和弦的雷诺数Re-C = 400,000的致动Naca4412翼型上的流量的大涡流模拟。这些解决方案延长了先前对致动的DRA2303翼型流的分析,因为两个流量配置具有完全不同的压力分布。跨向行驶横向表面波的技术用于改善空气动力学效率,即减少拖动并增加升力。机翼部分的上侧和下侧的大约65%的NACA4412表面被完全致动。测试了两个参数组合,第一设施导致ΔC(d)= -8.3%的总阻力减少,并通过δc(l)= 2.4%的升力增加,第二组合产生温和的净省电Delta p-net = -1.4%。在致动参数最佳的区域中,在致动参数最佳的区域中实现壁剪切应力的强度达到ΔC(f)= -31%,使得在后缘处观察到降低的边界层厚度。在两种情况下讨论了两个位置上的两个位置的详细边界层统计。在边界层上强烈地减小了速度波动,并且在特定的内部缩放中也观察到近壁区域中的流动波动的减小。特别是为了流动速度,获得远离壁的能量和较小的尺度的偏移。边界层的变化持续在致动区域之外,即在后缘下游的唤醒中确定了降低的湍流动能。致动的NACA4412流与来自致动DRA2303的数据的比较显示了流场的类似修改,即,为两个翼型实现阳性阻力。这清楚地表明了横向行波减阻技术的鲁棒性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号