首页> 外文期刊>International Journal of Heat and Fluid Flow >Numerical simulation of magnetic control of heat transfer in thermal convection
【24h】

Numerical simulation of magnetic control of heat transfer in thermal convection

机译:对流换热的磁控制数值模拟

获取原文
获取原文并翻译 | 示例
       

摘要

We report on numerical study of effects of orientation and distribution of an external magnetic field on the reorganization of convective structures and heat transfer in thermal convection in electrically conductive fluids. The simulations were performed using a transient RANS (T-RANS) approach in which the large-scale deterministic structures are numerically resolved in time and space and the unresolved contribution is modelled using an algebraic stress-flux three-equation subscale model. For low Prandtl (Pr) fluids the subscale model was extended to include Pr-dependent molecular dissipation of heat flux. The method was first validated in natural convection in a side-heated cubical enclosure subjected to magnetic fields of different orientation, strength and penetration depth, showing good agreement with the previous benchmark studies. Subsequently, a series of simulations was performed of turbulent Rayleigh-Benard convection subjected to different magnetic fields over a range of Rayleigh (Ra) and Hartmann (Ha) numbers. The computed Nusselt number showed good agreement with the available experimental results. Numerical visualization of instantaneous flow patterns showed dramatic differences in the convective structures and local heat transfer for different orientation of the magnetic field with respect to the gravitation vector. A gradual, step-like increase in the magnetic strength revealed an interesting outcome of the "competition" between the buoyancy and the Lorentz forces, leading first to chaotic transition and eventually to laminarization. For specific ranges of Ha, it was found that a local magnetic field confined to the wall boundary layer along the thermally active walls provides almost equal effects as the homogeneous field over the whole flow, indicating an interesting possibility for controlling thermal convection and associated heat transfer.
机译:我们报告的数值研究的方向和外部磁场的分布对对流结构的重组和热流体中的热对流换热的影响。使用瞬态RANS(T-RANS)方法进行了仿真,其中在时间和空间上对大型确定性结构进行了数值解析,并使用代数应力通量三方程子量表模型对未解决的贡献进行了建模。对于低Prandtl(Pr)流体,扩展了子尺度模型,以包括依赖于Pr的热通量分子消散。该方法首先在侧向加热的立方外壳中自然对流中得到验证,该外壳在不同方向,强度和穿透深度的磁场作用下显示出与以前的基准研究良好的一致性。随后,进行了一系列模拟,在一系列瑞利(Ra)和哈特曼(Ha)数范围内,湍流瑞利-贝纳德对流经受不同的磁场。计算得出的努塞尔数与可用的实验结果显示出很好的一致性。瞬时流动模式的数值可视化显示,对于磁场相对于引力矢量的不同方向,对流结构和局部传热存在巨大差异。磁场强度逐渐呈阶梯状增加,表明浮力和洛伦兹力之间的“竞争”产生了有趣的结果,首先导致混沌转变,最终导致层化。对于特定的Ha范围,发现沿热活性壁限制在壁边界层的局部磁场提供的效果几乎与整个流场中的均匀场相同,这表明控制热对流和相关传热的有趣可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号